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Ten reasons

• Reason #1: SEM makes you think causally - use directed arrows.

• Reason #2: SEM makes you think processually – mediation and confounding.

• Reason #3: We observe covariations – the task of science is to theorize and test the explanation of these 
covariations – this is what SEM does.

• Reason #4: SEM makes you distinguish between the real world and data – the difference is measurement.

• Reason #5: SEM allows to diagnose and correct attenuation by random measurement error [unreliability] – 
using multiple indicator measurement.

• Reason #6: SEM allows to diagnose and correct systematic measurement error [invalidity] – using multi-trait 
multi-methods modelling.

• Reason #7: SEM allows you to test measurement invariance between groups and/or constructs.

• Reason #8: SEM lets you boost statistical power, by using constrained estimation.

• Reason #9: SEM lets you use all available data – which lets you boost statistical power and repair.

• Reason #10: with SEM you can estimate causally smart designs, such as simplex (markow) models. 
instrumental variables and reciprocal effects.
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Acknowledgements

• Please cite these materials as: Ganzeboom, Harry BG (2024). “Ten reasons 
why you should be doing SEM for the rest of your life.” Presentation at the 
Quantlab Seminar, University of Melbourne [AU], October 28, 2024. 

• This presentation is a summary of materials on SEM modelling that I 
assembled during PhD courses at the University of Melbourne, in 2015 and 
2017, and subsequently updated in MA tutorials at VU University 
Amsterdam.

• These materials are available at 
http://www.harryganzeboom.nl/Teaching/SEM/index.htm.

• I have added a document with Stata syntax and comments as worked 
examples of some of my statements.

Ganzeboom - SEM Introduction 3

http://www.harryganzeboom.nl/Teaching/SEM/index.htm


Good readings

• StataCorp. 2011. Stata Structural Equation Modeling Reference 
Manual Release 12. [Software Manual]. 

• Bollen, Kenneth A., and Judea Pearl. 2013. “Eight Myths About 
Causality and Structural Equation Models.” Handbooks of Sociology 
and Social Research, no. January: 301–28. 
https://doi.org/10.1007/978-94-007-6094-3_15.

• Pearl, Judea. 2014. “The Causal Foundations of Structural Equation 
Modeling.” In Handbook of Structural Equation Modeling, edited by 
Rick H Hoyle, 68–91. New York: Guilford.
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Let us look at a single correlation

• There are three possible ways how a correlation between A and B can 
come about:
• Causation: A → B

• Reversed causation: B → A

• Spurious causation B  C → A (fork)
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Three possible explanations of a correlation

A B A B

C

A B

c1 c2

rAB = c1*c2

Causation Reversed causation

Spurious causation
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Fundamental theorem of path analysis

• Correlation = direct effect + indirect effects + spurious effects

• Correlation = direct effect + chains + forks

• Original: 
• Wright, Sewall. 1921. “Correlation and Causation.” Journal of Agricultural Research 20 (7): 

557–85.
• Wright, Sewall. 1934. “The Method Of Path Coefficients.” The Annals of Mathematical 

Statistics 5 (3): 161–215. https://doi.org/10.1214/aoms/1177732676.

• In sociology:
• Duncan, Otis Dudley, and Robert W Hodge. 1963. “Education and Occupational Mobility a 

Regression Analysis.” American Journal of Sociology 68 (6): 629–44. 
https://doi.org/10.1086/223461.

• Duncan, Otis Dudley. 1967. “The Process of Stratification.” In Blau, Peter M.; Duncan, O. 
Dudley, The American Occupational Structure. Wiley, New York, 163–205.

• Alwin, Duane F, and Robert M Hauser. 1975. “The Decomposition of Effects in Path Analysis.” 
American Sociological Review 40 (1): 37–47. https://doi.org/10.2307/2094445.
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Factor analysis = algebra of the fork

• We cannot solve: rAB = c1*c2.

• (unless assuming c1 = c2).

• But with a third indicator the system of equations is exactly identified.
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Factor analysis – latent variable measurement 
model

M

A
m1

B
m2

C
m3

c1 c2 c3

rAB = c1*c2
rAC = c1*c3
rBC = c2* c3

Three equations with
three unknowns == 
Identified

c1 c2 c3 are factor 
loadings = measurement
coefficients
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What have you learned untill now (I)?

• The world is a correlation (covariance) matrix.
• Correlation implies causation. 
• Measurement is a causal process: a latent variable causes the observed 

indicators.
• Causality is symbolized by arrows: these arrows have a direction and a 

strength.
• The structure (direction) of the causal effects comes from theory (not from 

the data). Only the strength of effects comes from the data.
• Algebra of forks: confounding effect = multiplication of direct effects.
• Causal model generates expected correlations: the difference between 

expected and observed correlation == model fit.
• Also (but NOT TRUE): for proper measurement you need THREE indicators.
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Fit statistics

• SEM models imply expected correlations: c1*c2 = r(AB).

• Expected correlations are compared to observed correlations in fit 
statistics.

• Most relevant:
• L2(df): a Chi2 statistic that tests significance of the differences between 

expected and observed correlations. Strongly sensitive to sample size.

• RMSEA: Root Mean Square Error of Approximation. Tests whether misfit is 
within acceptable boundaries. Comes also with a significance test.

• The SEM literature is littered with (other) fit statistics. Not useful. 
Rather concentrate on parameters and changes between models.
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Mediation analysis = algebra of the chain

X Y
total effect c

X Y

M

partial effect c’

partial 
effect b

(partial)
effect arXY = c = c’+a*b

rXM = a
rMY = a*c’ (fork!)
a*b =I ndirect effect (chain)
a*c = confounding effect (fork)

Three equations with 
three unknonws ==
identified
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SEM = Structural (or: Simultaneous) Equation 
Modelling
• SEM merges measurement models (factor analysis) with structural 

(mediation) models.
• Blalock, Hubert M. 1964. Causal Inferences in Nonexperimental Research. 

New York: Norton.

• Jöreskog, K. G. 1970. “A General Method for Analysis of Covariance 
Structures.” Biometrika 57 (2): 239–51. 
https://doi.org/10.1093/biomet/57.2.239.

• Hauser, Robert M, and Arthur S Goldberger. 1971. “The Treatment of 
Unobservable Variables in Path Analysis.” Sociological Methodology 3: 81. 
https://doi.org/10.2307/270819.

• LISREL, AMOS, EQS, MPLUS, SEM in Stata, Lavaan in R.
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The total (=bivariate) effect X → Y in SEM

X Y

x1 x2 x3 y1 y2 y3

X → Y

a1 a2 a3 c1 c2 c3

r(x1,x2) = a1*a2
r(x1,x3) = a1*a3
r(x2,x3) = a2*a3

r(y1,y2) = c1*c2
r(y1,y3) = c1*c3
r(y2,y3) = c2*c3

r(x1,y1) = a1*XY*c1
r(x1,y2) = a1*XY*c2
r(x1,y3) = a1*XY*c3

r(x2,y1) = a2*XY*c1
r(x2,y2) = a2*XY*c2
r(x2,y3) = a2*XY*c3

r(x3,y1) = a3*XY*c1
r(x3,y2) = a3*XY*c2
r(x3,y3) = a3*XY*c3Ganzeboom - SEM Introduction 14



Example from fake.dta

• What happens if we leave out indicators from the measurement 
model?

• Using constrained estimation: forcing equality between coefficients.

• Model fit, residuals.

• Correction for attenuation with known (un)reliability.
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How many indicators?

• If you embed a measurement model in a structural model, TWO 
indicators suffice for disattenuating structural relationships.

• More indicators and better (stronger correlated) indicators (should) 
have no consequences for the structural relationships, but make SE 
smaller. Better measurement is like having a larger sample.

• However, with more than three indicators the measurement model is 
driven by internal consistency, with two indicators the measurement 
model is driven by external variables.

• If you prefer two indicators and have more, consider random split-half 
parcelling: assign indicators to two parts by random lottery.
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What if you have only one indicator?

• If you have only a single indicator, you cannot estimate a 
measurement model.

• However, this does not mean that your single measure is perfectly 
reliable…

• SEM allows you to correct attenuation when you can assume a level 
of reliability, such as Cronbach’s alpha or McDonalds Omega.

• This may get you the correct point estimate of the structural 
relationships, but I have my doubt about the SE.

Ganzeboom - SEM Introduction 17



What have your learned now (II)?

• Measurement: observed variable = true score – measurement error.

• Random measurement error = unreliability.

• Unreliability always weakens (‘attenuates’) correlations, it never makes them 
stronger.

• A measurement model corrects this attenuation: disattenuation.

• If you embed a measurement model in a structural model, TWO indicators are 
enough for disattenuation.

• More indicators and less random error in each does not change disattenuation 
(much), but it does lead to smaller SE (sampling fluctuations).

• A latent variable is the real thing. Data exist only on your computer.

• Averaging multiple indicators into an index gets you closer to the true score, but 
some difference remains. The difference is measured by reliability coefficients 
like Cronbach’s alpha or McDonald’s Omega.
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Mediation (indirect effects)

• In mediation problems the algebra of chains applies: an indirect effect is a 
multiplication of the two direct effects.

• This algebra of a chain is similar, but not the same as the algebra of a fork.
• In a mediation model you can see both a chain (X → M → Y) and a fork (Y 
 X → M).

• Confounding and mediation are very much related, but they have radically 
different interpretations:
• Confounding: no causal effect X → Y
• Mediation: causal effect X → Y is explained

• Both confounding and mediating variables are called control variables. The 
use of the word “control variable” is rather confusing and should be 
banned.
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Mediation with measurement effects

X Y

M

x y

m

a

b

rXY = C’ + A*B
rXM = A
rMY – B + A*C’

r(xm) = a*A*b
r(xy) = a*A*b*b*B*c + a*C*c
r(my) = b*B*c + a*A*b * a*C’*c

A B 

C’ c
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Confounding with measurement effects

C Y

X

x y

m

a

b

rCY = C’ + A*B
rCX = A
rXY = B + A*C’

r(xm) = a*A*b
r(xy) = a*A*b*b*B*c + a*C*c
r(my) = b*B*c + a*A*b * a*C’*c

A B 

C’ c
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What have you learned by now (III)?

• Confounding by prior variables (spurious causation) and mediation by an 
intervening variable (indirect causation) follow the same algebra: 
confounding is a fork, mediation is a chain, but in both cases the 
measurement coefficients kick in twice.

• In fact, to obtain valid conclusions about mediation or confounding, the 
mediating or confounding variables must be perfectly measured.

• Having perfect measurement of mediation and confounding variables (M 
and C, both often called “control variables”) is more important to your 
conclusions than perfect measurement of X and Y.

• Perfect measurement can be achieved with a (SEM) measurement model.
• If you use a SEM measurement model or other forms of correction for 

attenuation of random measurement error, the size of indirect and 
spurious effects will increase, and the direct effect will be decrease.
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Systematic measurement errors (invalidity)

• Measurement does not only contain random measurement error (unreliability), but may 
also have systematic measurement error (invalidity or bias).

• Random measurement error can be traced by repeating the measurement, systematics 
measurement error can be traced by repeating the measurement error.

• This is the idea behind MTMM models: multiple-trait multiple-methods.

• Sources:
• Campbell, Donald T, and Donald W Fiske. 1959. “Convergent and Discriminant Validation by the 

Multitrait-Multimethod Matrix.” Psychological Bulletin 56 (2): 81–105. 
https://doi.org/10.1037/h0046016.

• Andrews, Frank M. 1984. “Construct Validity and Error Components of Survey Measures: A 
Structural Modeling Approach.” The Public Opinion Quarterly 48 (2): 409–42. 
https://doi.org/10.1086/268840.

• Saris, Willem E, and Frank M Andrews. 1991. “Evaluation of Measurement Instruments Using a 
Structural Modeling Approach.” In Measurement Errors in Surveys, edited by Paul Biemer, Robert 
M Groves, Lars E Lyberg, Nancy E Mathiowetz, and Seymour Sudman, 575–97.
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MTMM in reduced form

T1 T2

t11 t21 t12 t22

a b a b

c

d

e

r(t11,t21) = a*b
r(t12,t22) = a*b
r(t11,t12) = a*c*a+d
r(t11,t22) = a*c*b
r(t21,t22) = b*c*b+e
r(t11,t12) = b*c*a Model is NOT identified, 

but can be made 
identified with auxiliary
variables
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MTMM with auxiliary variables

T1 T2

t11 t21 t12 t22

a b a b

c

d

e

r(t11,t21) = a*b
r(t12,t22) = a*b
r(t11,t12) = a*c*a+d
r(t11,t22) = a*c*b
r(t21,t22) = b*c*b+e
r(t11,t12) = b*c*a

AUX

aux
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What you should have learned by now (IV) …

• SEM MTMM allows you to separate (un)reliability and (in)validity.

• While “systematic error” sounds more threatening than “random 
error”, in practice random error is more problematic than systematic 
error.
• Systematic error may occur, random error is always present.

• Even if your measurement is biased, you are measuring something. If you 
measurement in unreliable, you are measuring nothing/

Ganzeboom - SEM Introduction 26



Incomplete data

• SEM can use all available data (=pairwise correlation matrix) with Full 
Information Maximum Likelihood (FIML, MLMV).

• FIML is much more appealing than Multiple Imputation (to which is is 
asymptotically equivalent).

• The two problems of complete cases analysis (=using listwise 
correlations):
• Inefficiency: you have fewer cases than that you have collected.
• Bias: the complete cases may be different from the population.

• MI makes people think about the cases that are missing. FIML 
concentrates on the information that you do have, but would become 
unused by complete cases selection.
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FIML: how does it work?

• Think about dividing your data in as many groups as you have missing 
value pattern.

• Then estimate the model with equality constraint over all groups.

• SEM programs have standard options for this. In Stata: 
method(mlmv).

• You will see that the SE are wider for the parts of the correlations 
where you have fewer cases.

• Example: effects of father’s and mother’s occupation on occupation.
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What you should have learned (V)…

• Incomplete data are everywhere

• Using complete data always causes inefficiency and may cause bias.

• FIML is a easy and conceptually appealing way to analyse data with 
missing values.
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Simplex (markov) model

T1 T2 T3

t1 t2
t3

a a

b b
b

This model can separate true change
(a) from unreliability (b) in three wave 
panel data.

Can be used to obtain reliability 
estimates from single measure attributes

Assumption:
No direct effect
T1 → T3
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Instrumental variables model in SEM

IV X Y

C

Constraints:
No direct effect IV → Y
IV uncorrelated with C
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Reciprocal effects in 2-wave panel

X1

Y1

X2

Y2

Alternative to cross-lagged
panel-model with residual
Correlation between X2 and Y2.
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Restrictions & extensions

• SEM works best with continuous data; it then assumes a multivariate 
normal distribution. Bootstrapped and other (computer-intensive) SE 
estimates are available.

• Extensions to categorical data: GSEM in Stats, MPLUS → latent class 
analysis.

• Also available in GSEM: multi-level estimates.

Ganzeboom - SEM Introduction 33


	Slide 1: Ten reasons why you should be doing SEM for the rest of your life Introduction for Quantlab Seminar, University of Melbourne  October 28, 2024
	Slide 2: Ten reasons
	Slide 3: Acknowledgements
	Slide 4: Good readings
	Slide 5: Let us look at a single correlation
	Slide 6: Three possible explanations of a correlation
	Slide 7: Fundamental theorem of path analysis
	Slide 8: Factor analysis = algebra of the fork
	Slide 9: Factor analysis – latent variable measurement model
	Slide 10: What have you learned untill now (I)?
	Slide 11: Fit statistics
	Slide 12: Mediation analysis = algebra of the chain
	Slide 13: SEM = Structural (or: Simultaneous) Equation Modelling
	Slide 14: The total (=bivariate) effect X  Y in SEM
	Slide 15: Example from fake.dta
	Slide 16: How many indicators?
	Slide 17: What if you have only one indicator?
	Slide 18: What have your learned now (II)?
	Slide 19: Mediation (indirect effects)
	Slide 20: Mediation with measurement effects
	Slide 21: Confounding with measurement effects
	Slide 22: What have you learned by now (III)?
	Slide 23: Systematic measurement errors (invalidity)
	Slide 24: MTMM in reduced form
	Slide 25: MTMM with auxiliary variables
	Slide 26: What you should have learned by now (IV) …
	Slide 27: Incomplete data
	Slide 28: FIML: how does it work?
	Slide 29: What you should have learned (V)…
	Slide 30: Simplex (markov) model
	Slide 31: Instrumental variables model in SEM
	Slide 32: Reciprocal effects in 2-wave panel
	Slide 33: Restrictions & extensions

