
CHAPTER 5 

The Causal Foundations 
of Structural Equation Modeling 

Judea Pearl 

The role of causality in structural equation modeling 
(SEM) research is widely perceived to be, on the one 
hand, of pivotal methodological importance and, on 
the other hand, confusing, enigmatic, and controver­
sial. The confusion is vividly portrayed, for example, in 
the influential report of Wilkinson and the Task Force 
(1999), "Statistical Methods in Psychology Journals: 
Guidelines and Explanations." ln discussing SEM, the 
report starts with the usual warning-"Correlation 
does not prove causation"-but then it ends with a 
startling conclusion: "The use of complicated causal­
modeling software [read SEM] rarely yields any results 
that have any interpretation as causal effects." The 
implication being that the entire enterprise of causal 
modeling, from Wright (1921) to Blalock (1964) and 
Duncan (1975), the entire literature in econometric 
research, including modern advances in graphical and 
nonparametric structural models, has been misguided, 
for researchers have been chasing parameters that have 
no causal interpretation. 

The motives for such overstatements notwithstand­
ing, readers may rightly ask: "lf SEM methods do not 
'prove' causation, how can they yield resnlts that have 
causal interpretation?" Put another way, if the structur­
al coefficients that SEM researchers labor to estimate 
can legitimately be interpreted as causal effects, then, 
unless these parameters are grossly misestimated, why 
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deny SEM researchers the honor of "establishing cau­
sation" or at least of deriving some useful claims about 
causation? 

The answer is that a huge logical gap exists between 
"establishing causation," which requires careful ma­
nipulative experiments, and "interpreting parameters 
as causal effects," which may be based on firm scientif­
ic knowledge or on previously conducted experiments, 
perhaps by other researchers. One can legitimately be 
in possession of a parameter that stands for a causal 
effect and still be unable, using statistical means alone, 
to determine the magnitude of that parameter given 
nonexperimental data. As a matter of fact, we know 
that no such statistical means exist; that is, causal ef­
fects in observational studies can only be substantiated 
from a combination of data and untested theoretical as­
sumptions, not from the data alone. Thus, if reliance 
on theoretical assumptions disqualifies SEM's param­
eters from having an interpretation as causal effects, no 
method whatsoever can endow any parameter with such 
interpretation, and causal vocabulary should be purged 
from scientific discourse-an unthinkable restriction. 

But then, if the parameters estimated by SEM meth­
ods are legitimate carriers of causal claims, and if those 
claims cannot be proven valid by the data alone, what 
is the empirical content of those claims? What good are 
the numerical values of the parameters? Can they in-
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form prediction, decision, or scientific understanding? 
Are I hey not merely fiction of one's fancy, comparable, 
say, to horoscopic speculations? 

The aim of this chapter is to lay a coherent logical 
framework for answering these foundational questions. 
Following a brief historical account of how the causal 
interpretation ofSEM was obscured (section "SEM and 
Causality"), the chapter explicates the empirical con­
tent of SEM's claims (section "The Logic of SEM") 
and describes the tools needed for solving most (if not 
all) problems involving causal relationships (sections 
"The Causal Reading of Structural Equation Models" 
and "The Testable implications of Structural Mod­
els") . The tools are based on nonparametric structural 
equation models- a natural generalization of those 
used by econometricians and social scientists in the 
l950-1960s-that serve as an Archimedean point to 
liberate SEM from its parametric blinders and elucidate 
its causal content. 

In particular the chapter introduces: 

l. Tools of reading and explicating the causal as­
sumptions embodied in SEM models, as well as 
the set of assumptions that support each individ­
ual causal claim. 

2. Methods of identifying the testable implications 
(if any) of the assumptions in (1), and ways of 
testing not the model in its entirety, but the test­
able implications of the assumptions behind each 
individual causal claim. 

3. Methods of deciding, prior to taking any data, 
what measurements ought to be taken, whether 
one set of measurements is as good as another, 
and which measurements tend to bias our esti­
mates of the target quantities. 

4. Methods for devising critical statistical tests by 
which two competing theories can be distin­
guished. 

5. Methods of deciding mathematically if the causal 
relationships are estimable from the data and, if 
not , what additional assumptions , measurements, 
or experiments would render them estimable. 

6. Methods of recognizing and generating equiva­
lent models that solidify, extend, and amend the 
heuristic methods of Stelzl (1986) and Lee and 
Hershberger (1990). 

7. Generalization of SEM to categorical data and 
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nonlinear interactions, including a solution to the 
so-called "mediation problem" (Baron & Kenny, 
1986; MacKinnon, 2008). 

SEM ANO CAUSALITY: A BRIEF HISTORY 
OF UNHAPPY ENCOUNTERS 

The founding fathers of SEM , from Sewall Wright 
(1921) and the early econometricians (Haavelmo, 
1943; Koopmans, 1953) to Blalock (1964) and Duncan 
(1975), have all considered SEM a mathematical tool 
for drawing causal conclusions from a combination of 
observational data and theoretical assumptions. They 
were explicit about the importance of the latter, but also 
adamant about the unambiguous causal reading of the 
model parameters, once the assumptions are substanti ­
ated . 

In time, however, the causal reading of structural 
equation models and the theoretical basis on which it 
rests were suspected of "ad hockery," even to seasoned 
workers in the field . This occurred partially due to the 
revolution in computer power, which made workers 
"lose control of their ability to see the relationship be­
tween theory and evidence" (S~rensen, 1998, p. 241), 
and partly due to a steady erosion of the basic under­
standing of SEMs, which Pearl (2009, p. 138) attributes 
to notational shortsightedness (i .e., the failure of the 
equality sign to distinguish structural from regressional .::: :p • 
equations) . 

ln his critical paper on SEM, F~!!!!!!} (1987, p. l 14) ~­
challenged the causal interpretation of SEM as "self­
contradictory,'' and none of the 11 discussants of his 
paper were able to detect his error and to articulate the 
correct, noncontradictory interpretation of the example 
presented by Freedman. Instead, SEM researchers ap­
peared willing to accept contradiction as a fundamental 
flaw in causal thinking, which must always give way 
to statistical correctness. In his highly cited commen­
tary on SEM, Chin (1998) surrenders to the critics: 
"Researchers interested in suggesting causality in their 
SEM models should consult the critical writing of Cliff 
(1983), Freedman (1987), and Baumrind (1993).'' 

This, together with the steady influx of statisticians 
into the field, has left SEM resenrchers in a quandary 
about the meaning of the SEM parameters, and has 
caused some to avoid causal vocabulary altogether and 
to regard SEM as an encoding of the parametric fam ­
ily of density functions, void of causal interpretation. 
Muthen (1987), for example, wrote, "II would be very 



70 ,:, 

healthy if more researchers abandoned thinking of and 
using terms such as cause and effect." Many SEM text­
books have subsequently considered the term "causaj_ 
modeling' ' to be an outdated misnomer (e.g., elloway, 
1998, p. 8) , giving clear preference lo causality- · 
menclature such as "covariance structure," "regression 
analysis," or "simultaneous equations." A popular 21st­
century textbook reaffirms: "Another term that you 

!
I\ may have heard is causal modeling, which is a some­
\\ what dated expression first associated with the SEM 
' techniques of path analysis" (Kline, 2011 , p. 8). 

Relenlless assaults from the potential-outcome para-
digm (Rubin , 1974) have further eroded confidence in 
SEM's adequacy to serve as a language for causation. 
Sobel (1996) , for example, states that the interpretation 
of the parameters of SEM as effects "do not gener­
ally hold, even if the model is correctly specified and 
a causal theory is given ." Comparing structural equa­
tion models to the potential-outcome framework, Sobel 
(2008) asserts that "in general (even in randomized 
studies), the structural and causal parameters are not 
equal , implying that the structural parameters should 

\

,. not be interpreted as effect." Remarkably, formal anal­
ysis proves the exact opposite: Structural and causal 
parameters are one and the same thing, and they should 
always be interpreted as effects (Galles & Pearl, 1998; 
Halpern, 1998; see section "The Causal Reading of 
Structural Equation Models"). 

Paul Holland, another advocate of the potential­
outcome framework, unravels the root of the confusion: 
"lam speaking, of course, about the equation: (y =a+ 
bx+ E}. What does it mean? The only meaning I have 
ever deterrnined for such an equation is that it is a short­
hand way of describing the conditional distribution of 
(y} given (x}" (Holland, 1995, p. 54) . We will see that 
the structural interpretation of this equation has in fact 
nothing to do with the conditional distribution of (y} 
given ( x I; rather, it conveys causal information that is 
orthogonal to the statistical properties of (x} and (y} 
(see section "Counterfactual Analysis in Structural 
Models"). 

We will further see (section "Relations to the Poten­
tial Outcome Framework") that the SEM language in 
its nonparametric form offers a mathematically equiva­
lent alternative to the potential-outcome framework 
that Holland and Sobel advocate for causal inference­
a theorem in one is a theorem in another. SEM provides 
in fact the formal mathematical basis from which the 
potential-outcome notation draws its legitimacy. This, 
together with its friendly conceptual appeal and ef-
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fective mathematical machinery, explains why SEM 
retains its status as the prime language for causal and 
counterfactual analysis .1 These capabilities are rarely 
emphasized in standard SEM texts, where they have 
been kept dormant in the thick labyrinths of software 
packages, goodness-of-fit measures, linear regression, 
maximum likelihood (ML) estimates, and other details 
of parametric modeling. The nonparametric perspec­
tive unveils these potentials and avails them for both 
linear and nonlinear analyses. 

THE LOGIC OF SEM 

Trimmed and compromised by decades of statistical 
assaults, textbook descriptions of the aims and claims 
of SEM grossly understate the power of the methodol­
ogy. Byrne (2006), for example, describes SEM as "a 
statistical methodology that takes a confirmatory (i.e., 
hypothesis-testing) approach lo the analysis of a struc­
tural theory bearing on some phenomenon .... The hy­
pothesized model can then be tested statistically in a 
simultaneous analysis of the entire system of variables 
to determine the extent to which it is consistent with the 
data. If goodness-of-fit is adequate, the model argues 
for the plausibility of postulated relations among vari­
ables; if it is inadequate, the tenability of such relations 
is rejected." 

Taken literally, this confirmatory approach encoun­
ters some basic logical difficulties. Consider, for exam­
ple, the hypothesized model: 

M = "Cinderella is a terrorist." 

Although goodness-of-fit tests with any data would fail 
to uncover inconsistency in this hypothesized model, 
we would find it odd to argue for its plausibility. At­
tempts to repair the argument by insisting that M be 
falsifiable and invoke only measured variables does not 
remedy the problem. Choosing 

M = "Barometer readings cause rain and 
the average age in Los Angeles is higher than 3." 

will encounter a similar objection; although M is now 
falsifiable, and all its variables measured, its success in 
fitting the data tells us nothing about the causal rela­
tions between rain and barometers. 

The only way to avoid this paradox is lo insist that 
the tested component of M (that the average age is high-
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er than 3) be logically related to its claims (that barom­
eters cause rain) , but this stands contrary to the philos­
ophy of confirmatory analysis, according to which the 
hypothesized model is submitted to a test "of the entire 
system of variables," irrespective of whether the tested 
part bears any relationship to the resulting claims. 

This simple, albeit contrived, example uncovers a 
basic logica l flaw in the conservative confirmatory ap­
proach, and underscores the need to spell out the em­
pirical content of the assumptions behind the hypoth­
esized model , the claims inferred by the model, and the 
degree to which data corroborate the latter. 

The interpretation of SEM methodology that emerg­
es from the nonparametric ers12ective (Pearl, 2009, 
pp. 159- 163, 368-374) makes these specifications ex­
plicit and is, therefore, free of such fl aws. According 

' \

to this interpretation, SEM is an inference method that 
takes three inputs and produces three outputs. The in­
puts are: 

1-1. A set A of qualitative causal assu111ptio11s, 
which the investigator is preparedto defend 
on scientific grounds, and a model M,1 that en­
codes these assumptions. (Typically, MA takes 
the form of a path diagram or a set of structural 
equations with free parameters. A typical as­
sumption is that certain omitted factors, rep­
resented by error terms, are uncorrelated with 
some variables or among themselves, or that no 
direct effect exists between a pair of variables.) 

1-2. A set Q o querie concerning causal and coun­
terfactual r , 1onships among variables of in ­
terest. Traditionally, Q concerned the magni­
tudes of structural coefficients but, in general 
models, Q will address causal relations more 
directly, for example, 

Q1: What is the effect of treatment X on out­
come Y? 

Q2: ls this employer guilty of gender dis-
crimination? 

Theoretically, each query Q; E Q should be 
computable from a fully specified model Min 
which all functional relationships are given. 
Noncomputable queries m·e inadmissible. 

1-3. A set D of experimental or nonexperimental 
data , governed by a joint probability distribu­
. presumably generated by a process consis­

tent with A. 
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The outputs are : 

0-1. A set A* of statements that are the logical im­
plica1io , of A, separate from the data al hand , 
o xample, that X has no effect on Y if we 

hold Z constant, or that Z is an instrument rela­
tive to (X, Y). 

0-2. A set C of data-based lai111s oncerning the 
magnitudes or likelihoo , 1e target queries 
in Q, each conditional on A. C may contain, for 
example, the estimated mean and vm·iance of 
a given structural parameter, or the expected 
effect of a given intervention. Auxiliary to 
C, SEM also generates an estimand Q;(P) for 
each query in Q, or a determination that Q; is 
not identifiable from P e~n 1). 

0-3. A list T of testable s atistical implicaf 1s of 
A, and the degree g(T;), ; , o which the 
data agree with each of those implications. A 
typical implication would be the vanishing of 
a specific partial correlation; such constraints 
can be read from the model M,1 and confirmed 
or d" n-f.irmed quantitatively by the dat a 

efinition 3). 

The structure of this inferential exercise is shown sche­
matically in Figure 5.1. 

Several observations are worth no~ in before illus ­
trating these inferences by examples. irst EM is not 
a traditional statistical methodology, ypified by hy­
pothesis testing or estimation, because neither claims 
nor assumptions are expressed in terms of probability 
functions of realizable variables (Pearl, 2009) . 
~ nd) all claims produced by an SEM study are 
c~l on the validity of A, and should be reported 
in conditional formal : "lf A then C;'' for any claim C; E 

C. Such claims, despite their provisional character, are 
significantly more assertive than their meek, confirma­
tory predecessors. They assert that anyone willing to 
accept A must also accept C;, out of logical necessity. 
Moreover, no other method can do better; that is, if 
SEM analysis finds that a set A of assumptions is neces­
sary for inferring a claim C;, no other methodology can 
infer C. with a weaker set of assumptions.2 

~ d ) passing a goodness-of-fit test is not a prereq­
ui~ the validity offiie conditional claim "lf A then 
C;'' nor for the validity of C;. While it is important to 
know if any assumptions in A are inconsistent with the 
data, MA may not have any testable implications what-

9 
,, 
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A- CAUSAL 
ASSUMPTIONS 

CAUSAL 
MODEL 

(A«) 
A•- Logical 

implications of A 

Data(D) 

~ - Estimates of Q (P) 

1-------
1 
I 

I 

/\ 
Q(D,A) 

Conditional claims 

--------, 

g(T) 

I 

I 
I 
I 
I ,..--------' 
I 

T(M..4) • Testable implicatiOll.'l 

Goodness of fit 

Model testing 

FIGURE 5.1. SEM methodology depicted as an inference engine converting assumptions (A), queries (Q), and data (D) 
into logical implications (A*), conditional claims (C). and data-fitness indices (g(T)). 

soever. ln such a case, the assertion ''lf A then C/' may 
still be extremely informative in a decision-making 
context, since each C; conveys quantitative information 
extracted from the data rather than qualitative assump­
tion A with which the study commences. Moreover, 
even if A turns out inconsistent with D, the inconsisten­
cies may be entirely due to portions of the model that 
have nothing to do with the derivation of C;. lt is there­
fore important to identify which statistical implication 
of (A) is responsible for the inconsistency; global tests 
for goodness-of-fit hide this information (Pearl, 2004, 
2009; pp. 144-145). 

Finally, and this was realized by SEM researchers 
in the late 1980s, there is nothing in SEM's methodol­
ogy to protect C from the inevitability of contradictory 
equivalent models, namely, models that satisfy all the 
testable implications of MA and still advertise claims 
that contradict C. Modern developments in graphical 
modeling have devised visual and algorithmic tools 
for detecting, displaying, and enumerating equivalent 
models. Researchers should keep in mind therefore 
that only a tiny portion of the assumptions behind each 
SEM study lends itself to scrutiny by the data; the bulk 
of it must remain untestable, at the mercy of scientific 
judgment. 

THE CAUSAL READING 
OF STRUCTURAL EQUATION MODELS 
The Assumptions and Their Representation 

In this section I illustrate the inferences outlined in 
Figure 5.1 using simple structural models consisting of 
linear equations and their nonparametric counterparts, 
encoded via diagrams. Consider the linear structural 
equations 

y = ~x + lly, x = "x (5.1) 

where x stands for the level ( or severity) of a disease, y 
stands for the level (or severity) of a symptom, and uy 

stands for all factors, other than the disease in question, 
that could possibly affect Y when Xis held constant. In 
interpreting this equation we should think of a physi­
cal process whereby nature examines the values of all 
variables in the domain and, accordingly, assigns to 
variable Y the value y = ~x + Uy. Similarly, to "explain" 
the occurrence of disease X, we write x = ux, where Ux 
stands for all factors affecting X, which may in general 
include factors in Uy. 

To express the directionality of the underlying pro­
cess, we should either replace the equality sign with an 
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assignment symbol :=, or augment the equation with 
a "path diagram," in which arrows are drawn from 
causes to their effects, as in Figure 5.2. The absence of 
an arrow makes the empirical claim that Nature assigns 
values to one variable irrespective of another. ln our 
example, the diagram encodes the possible existence of 
(direct) causal influence of X on Y, and the absence of 
causal influence of Yon X, while the equations encode 
the quantitative relationships among the variables in­
volved, to be determined from the data. The "path coef­
ficient," p, quantifies the (direct) causal effect of X on 
Y Once we commit to a particular numerical value of 
p, the equation claims that a unit increase for X would 
result in p units increase of Y regardless of the values 
taken by other variables in the model, regm·dless of the 
statistics of Ux and Uy, and regardless of whether the 
increase in X originates from external manipulations or 
variations in Ux. 

The variables Ux and Uy are called "exogenous"; 
they represent observed or unobserved background 
factors that the modeler decides to keep unexplained­
that is, factors that influence but are not influenced by 
the other variables (called "endogenous") in the model. 
Unobserved exogenous variables in structural equa­
tions, sometimes called "disturbances" or "errors," 
differ fundamentally from residual terms in regression 
equations. The latter, usually denoted by letters Ex and 
Ey, are artifacts of analysis, which, by definition, are un­
correlated with the regressors. The former are shaped 
by physical reality (e.g., genetic factors, socioeconomic 
conditions), not by analysis; they are treated as any 
other variable, though we often cannot measure their 
values precisely and must resign ourselves to merely 
acknowledging their existence and assessing qualita­
tively how they relate to other variables in the system. 
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lf correlation is presumed possible, it is customary 
to connect the two variables, Uy and Ux, by a dashed 
double mTow, as shown in Figure 5.2(b). By allowing 
correlations among omitted factors, we encode in effect 
the presence of latent variables affecting both X and Y, 
as shown explicitly in Figure 5.2(c), which is the stan­
dard representation in the SEM literature (e.g., Bollen, 
1989). If, however, our attention focuses on causal rela­
tions among observed rather than latent variables, there 
is no reason to distinguish between correlated errors 
and interrelated latent variables; it is only the distinc­
tion between correlated and uncorrelated errors (e.g., 
between Figure 5.2(a) and (b)) that needs to be made.3 

Moreover, when the error terms are uncorrelated, it 
is often more convenient to eliminate them altogether 
from the diagram (as in Figure 5.7, section "Equivalent 
Models"), with the understanding that every variable, 
X, is subject to the influence of an independent distur­
bance Ux. 

ln reading path diagrams, it is common to use kin­
ship relations such as parent, child, ancestor, and de­
scendent, the interpretation of which is usually self­
evident. For example, the arrow in X ~ Y designates 
X as a pm·ent of Y and Y as a child of X. A "path" is 
any consecutive sequence of edges, solid or dashed. For 
example, there m·e two paths between X and Yin Figure 
5.2(b), one consisting of the direct arrow X ~ Y, the 
other tracing the nodes X, Ux, Uy, and Y 

ln path diagrams, causal assumptions are encoded 
not in the links but, rather, in the missing links. An 
arrow merely indicates the possibility of causal connec­
tion, the strength of which remains to be determined 
(from data); a missing mTow represents a claim of zero 
influence, while a missing double arrow represents a 
claim of zero covariance. Both assumptions are causal, 

UXT TUY Uxr--- _____ """T Uy 
Ux ~ Uy 

x=ux I .! y = j3x + Uy I I 

+ 
I 

' ' ' • ... 
X p y X p y X f3 y 

(a) (b) (c) 

FIGURE 5.2. A simple structural equation model, and its associated diagrams, showing (a) independent unobserved exog­
enous variables (connected by dashed arrows), (b) dependent exogenous variables, and (c) an equivalent, more traditional 
notation, in which latent variables are enclosed in ovals. 
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not statistical, since none can be determined from the 
joint density of the observed variables, X and Y, though 
both can be tested in experimental settings (e.g., ran­
domized trials). 

Causal Assumptions 
in Nonparametric Models 

To extend the capabilities of SEM methods to models 
involving discrete variables, nonlinear dependencies, 
and heterogeneous effect modifications, we need to de­
tach the notion of "effect" from its algebraic represen­
tation as a coefficient in an equation, and redefine "ef­
fect" as a general capacity to transmit changes among 
variables. The central idea is to exploit the invariant 
characteristics of structural equations without com­
mitting to a specific functional form. For example, the 
nonparametric interpretation of the diagram in Figure 
5.3 (a) corresponds to a set of three unknown functions, 
each corresponding to one of the observed variables: 

z =fz(llz) 

x=fx(z, 11,x) 

y =fy(X, lly) 

(5.2) 

where in this particular example U z, Ux, and Uy are 
assumed to be jointly independent but otherwise arbi­
trarily distributed. Each of these functions represents 
a causal process (or mechanism) that determines the 
value of the left variable (output) from the values on the 
right variables (inputs). The absence of a variable from 
the right-hand side of an equation encodes the assump­
tion that nature ignores that variable in the process of 
determining the value of the output variable. For ex­
ample, the absence of variable Z from the arguments 
of fr conveys the empirical claim that variations in Z 
will leave Y unchanged, as long as variables Uy and X 
remain constant. 

UZT TUX TUY 
I I 
I I 

' ' ' z X y 

(a) 
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Representing Interventions 
and Causal Effects 

Remarkably, this feature of invariance permits us to 
derive powerful claims about causal effects and coun­
terfactuals, despite our ignorance of functional and dis­
tributional forms. This is done through a mathematical 
operator called do(x), which simulates physical inter­
ventions by deleting certain functions from the model, 
replacing them with a constant X = x, while keeping the 
rest of the model unchanged. For example, to emulate 
an intervention do(x0) that holds X constant (at X = x0) 

in model M of Figure 5.3 (a), we replace the equation for 
x in Equation 5.2 with x = x0, and obtain a new model, 

M.,o' 
z =fz(llz) 

x=x0 
(5.3) 

y = fy(X, llr) 

the graphical description of which is shown in Figure 
5.3(b). 

The joint distribution associated with the modified 
model, denoted P(z, ylda(x0)) describes the postinter­
vention distribution of variables Y and Z (also called 
"controlled" or "experimental" distribution), to be dis­
tinguished from the preintervention distribution, P(x, 
y, z), associated with the original model of Equation 
5.2. For example, if X represents a treatment variable, 
Ya response variable, and Z some covariate that affects 
the amount of treatment received, then the distribution 
P(z, y lda(x0)) gives the proportion of individuals that 
would attain response level Y = y and covariate level Z = 
z under the hypothetical situation in which treatment X 
= x11 is administered uniformly to the population. 

In general, we can formally define the postinterven­
tion distribution by the equation 

UzT .ux ,u, 
XO I 

I 

+ ' ' • •• z X y 

(b) 

FIGURE 5.3. The diagrams associated with ( a) the structural model of Equation 5.2 and (b) the modified model of Equa­
tion 5.3, representing the intervention do(X = x0). 
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(5.4) 

In words : ln the framework of model M, the post­
intervention distribution of outcome Y is defined as the 
probability that model M,. assigns to each outcome level 
Y = y. From this distribution, which is readily com­
puted from any fully specified model M, we are able 
to assess treatment efficacy by comparing aspects of 
this distribution at different levels of x0. However, the 
central question in the analysis of causal effects is the 
question of identification. in partially specified models: 
Given assumptions set A (as embodied in the model) , 
can the controlled (postintervention) distribution, P(Y 
= y I do(x)) , be estimated from data governed by the pre­
intervention distribution P(z, x, y)? 

ln linear parametric settings, the question of identi­
fication reduces to asking whether some model param­
eter, p, has a unique solution in terms of the parameters 
of P (say, the population covariance matrix) . ln the 
nonparametric formulation, the notion of "has a unique 
solution" does not directly apply, since quantities such 
as Q(M) = P(yldo(x)) have no parametric signature and 
are defined procedurally by simulating an intervention 
in a causal model M, as in Equation 5.3. The following 
definition captures the requirement that Q be estimable 
from the data: 

Definition 1 (identifiability) (Pearl, 2000, p. 77) 

A quantity Q(M) is identifiable, given a set of 
assu111ptio11.1· A, ijfor any two 1nodel.1· M1 and M2 that 
satisfy A, we have 

ln words, the functional details of M 1 and M2 do not 
matter; what matters is that the assumptions in A (e.g., 
those encoded in the diagram) would constrain the vari­
ability of those details in such a way that equality of 
P's would entail equality of Q's. When this happens, Q 
depends on P only and should therefore be expressible 
in terms of the parameters of P. The section "Identifica­
tion Using Graphs" will exemplify and operationalize 
this notion. 

Counterfactual Analysis 
in Structural Models 

Not all questions of causal character can be encoded in 
P(y I do(x))-type expressions, thus implying that not all 
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causal questions can be answered from experimental i( 
studies. For example, retrospective questions regard­
ing causes of a given effect (e.g., what fraction of death 
cases are due to a specific treatment?) cannot be an­
swered from experimental studies, and naturally this 
kind of question cannot be expressed in P( y ldo(x)) 
notation.4 

To answer such questions, a probabilistic analysis of 
counterfactuals is required, one dedicated to the relation 
"Y would bey had X been x in situation U = 11 ," denoted 

Y,.(du) h=.
1
.v. Rehmarkably, unk

1
nown ~o mostdec

1 
onomi.sdts \

1

,, 
an p I osop ers, structura equation mo e s prov1 e 
the formal interpretation and symbolic machinery for 
analyzing such counterfactual relationships.5 

The key idea is to interpret the phrase "had X been x" 
as an instruction to make a minimal modification in the 
current model , which may have assigned X a different 
value, say, X = x', so as to ensure the specified condition 
X = x. Such a minimal modification amounts to replac­
ing the equation for X by a constant x, as we have done 
in Equation 5.3. This replacement permits the constant 
x to differ from the actual value of X (namely,fy(Z, ux)) 
without rendering the system of equations inconsistent, 
thus yielding a formal interpretation of counterfactu­
als in multistage models, where the dependent variable 
in one equation may be an independent v,u-iable in an ­
other. 

Definition 2 (unit-level counterfactuals) (Pearl, 2000, 
p. 98) 
Let M be a.fully spec(fied structural model and 
Mx; a modified version. of M, with the equation (s) 
of X replaced by X = x. Denote the solution for Y 
in the eq11ations of M_,; by the symbol YM, (u). The 
cou11te1factual Y,.(u) (Read: "The value of Yin unit 11, 

had X been x") is given by 

(5.6) 

ln words, the counterfactual Y,.(11) in model M is de­
fined as the solution for Yin the "surgically modified" 
submode! M,. . 

We see that every structural equation, say y = a + bx 
+ Uy, carries counter factual information, Y,/u) = a + bx 
+ uy, where Z is any set of variables in the model that do 
not appear on the right-hand side of the equation. Natu ­
rally, when U is a random variable, Yr will be a random 
variable as well, the distribution of which is dictated 
by both P(u) and the model M,. lt can be shown (Pearl, 
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2009, Ch. 7) that Equation 5.6 permits us to define joint 
distributions of counterfactual variables and to detect 
conditional independencies of counterfactuals directly 
from the path diagram. 

Reading Counterfactuals: An Example 

/{ This capacity of structural equations to encode and de­
liiiver counterfactual information, at both the unit and 
f !population levels, is hardly known among SEM re­
\ isearchers, and should receive much greater emphasis 
i 'in education and the mainstream literature. It is an es-

sential tool to ward off critics who view counterfactu­
als as an exclusive property of the potential outcome 
framework (Holland, 1988; lmbens, 2010; Rubin, 2004; 
Sobel, 2008; Wilkinson et al., 1999). This capacity can 
be demonstrated by a simple example, using a three­
variable linear model; the same one used by Holland 
(1988) and Sobel (2008) to "prove" that structural mod­
els do not have causal or counterfactual content. 

Consider the model in Figure 5.4, where X stands for 
the level of assistance (or "treatment") given to a stu­
dent, Z stands for the amount of time the student spends 
studying, and Y, the outcome, stands for the student's 
performance on an exam. Starting at a unit-level analy­
sis, let us consider a student named Joe, for whom we 
measure X = 0.5, Z = 1, Y = 1.5, and about whom we ask 
a counterfactual question: 

Q1: What would Joe's score be had he doubled his 
study time? 

I. BACKGROUND 

Using our subscript notation, this question amounts 
to evaluating Y2 - 2(u), with II standing for the distinctive 
characteristics of Joe, namely, u = (£1, fi, £3), as inferred 
from the observed data {X = 0.5, Z = 1, Y = 1.5). 

The answer to this question is obtained in three 
steps. 

1. Use the data to compute the exogenous factors 
£ 1, fi, £3. (These are the invariant characteristics 
of unit u, and do not change by interventions or 
counterfactual hypothesizing.) ln our model, we 
get (Figure 5.4(b)): 

£1 = 0.5 

ti= l - 0.5 X 0.5 = 0.75 

£3 = 1.5 - 0.5 X 0.7 - l X 0.4 = 0.75 

2. Modify the model to form M2 ~2, in which Z is 
set to 2 and all arrows to Z are removed (Figure 
5.4(c)). 

3. Compute the value of Y in the mutilated model 
formed in step 2, giving: 

Yz-2 = 0.5 x 0.7 + 2.0 x 0.4 + 0.75 = 1.90 

This example illustrates the need to modify the orig­
inal model (Figure 5.4(a)), in which the combination 
(X = 1, fi = 0.75, Z = 2.0) constitutes a contradiction 
(see Note 5). This is precisely the contradiction that 
Freedman (1987) could not reconcile in his criticism 
ofSEM. 

=1.0 

X a.=0.7 

(a) 

.,. 
~ 
0 

"11' 

y X=0.5 a =0.7 
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.,. 
~ 
0 
"'SI' 83 = 0.75 81 = 0.5 

Y=l.S XmO.S a =0.7 

(c) 

.,. 
~ 
0 
''SI' 83=0.75 

Y=l.9 

FIGURE 5.4. Structural models used for answering a counterfactual question about an individual 11 = (£1, ~, £3). (a) The 
generic model (all intercepts are assumed zero); (b) the 11-specific model; and (c) the modified model necessary to accom­
modate the antecedent Z = 2 of the counterfactual question Q 1• 
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£2=0.75 

Z= 1.25 Z= 1.25 

~ 
E 1 = 0.5 

0 
'l7 E]= 0.75 £1= 0.5 .. 

X= 1 a= 0.7 

(a) 

Y= 1.95 

.. 
X=O a= 0.7 

(b) 

Y= 1.25 

FIGURE 5.5. Unit-specific structural models used for answering a nested counterfactual question concerning the indirect 
effect of X on Y. (a) Modified model needed for calculating Z1• (b) Modified model needed for calculating Y0,z,· 

Let us now ask another hypothetical question about 
Joe. 

Q2: What would Joe's score be, had the treatment 
been O and had he studied at whatever level he 
would have studied had the treatment been 1? 

This rather intricate question, which involves nested 
conditionals, is the basis for defining mediation, to be 
discussed fully in section "Mediation," Using our sub­
script notation, the quantity sought can be written as 
Yi,,z, where Z1 is the value that Z would attain had X 
bee11 one. To compute this quantity we need to form 
two modified models. The first, shown in Figure 5.5(a), 
is to compute Z1, the second antecedent in Y0,z,: 

Z, = 1.0 X 0.5 + 0.75 = l.25 

The second, shown in Figure 5.5(b), to compute Y0 2 , 

and thus provide an answer to Q2 : · ' 

Y0,21 = Y0,125 = 1.25 x 0.4 + 0.75 = 1.25 

lf we compare this value of Y0 2 = 1.25 with Joe's 
outcome had he not received any 'tt'eatment, Yi, = 0.75 
x 0.4 + 0.75 = 1.05, the difference is, as expected, the 
indirect effect of X on Y, Yi, 2 - Y11 = 0.20 = ~ x Y, 

This exercise may seem' unnecessarily complicated 
in linear models, where we can compute our desired 
quantity directly from the product ~ x y, The benefit of 
using counterfactuals will be revealed in section "In­
direct Effects," where indirect effects will be defined 

for discrete variables, and estimated from data without 
assuming any parametric forms of the equations. 

Predicting Outcomes and Potential Outcomes 
in Empirical Studies 

Having convinced ourselves that every counterfactual 
question can be answered (using Equation 5.6) from a 
fully specified structural model, we next move to popu­
lation level analysis and ask a policy-related question 
on a set of 10 individuals, with Joe being participant 1. 
Each is characterized by a distinct vector u; = (E1, Ei, 
E3), as shown in the first three columns of Table 5.1. 

For each triplet (E1, Ei, ~), the model of Figure 5.4(a) 
enables us to complete a full row of the table, includ­
ing Y0 and Y1, which stand for the potential outcomes 
under control (X = 0) and treatment (X = 1) conditions, 
respectively. We see that a simple structural model like 
the one in Figure 5.4(a) encodes in effect a synthetic 
population of individuals together with their predicted 
behavior under both observational and experimental 
conditions. The columns labeled X, Y, Z predict the 
results of observational studies, and those labeled Y0, 

Y1, Z0, Z1 predict the hypothetical outcome under two 
treatment regimens, X = 0 and X = 1. Many more­
in fact, infinite-potential outcomes may be predicted 
as well, for example, Yx=o.s,Z=l.o computed in Figure 
5.4(c), and all combinations of subscripted variables. 
From this synthetic population one can find the distri­
bution of every counterfactual query on variables X, Y, 
Z, including, in particular, retrospective counterfactu­
als, such as the probability that a person chosen at ran-
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TABLE 5.1. Potential and Observed Outcomes Predicted by the Structural Model of Figure 5.4(a) 
Participant characteristics Observed behavior Predicted potential outcomes 

Participant £1 £2 £3 X y z Yo Y1 lo Z1 Yoo··· 

1 0.5 0.75 0.75 0.5 1.50 1.0 1.05 1.95 0.75 1.25 0.75 

2 0.3 0.1 0.4 0.3 0.71 0.25 0.44 1.34 0.1 0.6 0.4 

3 0.5 0.9 0.2 0.5 1.01 1.15 0.56 1.46 0.9 1.4 0.2 

4 0.6 0.5 0.3 0.6 1.04 0.8 0.50 1.40 0.5 1.0 0.3 

5 0.5 0.8 0.9 0.5 1.67 1.05 1.22 2.12 0.8 1.3 0.9 

6 0.7 0.9 0.3 0.7 1.29 1.25 0.66 1.56 0.9 1.4 0.3 

7 0.2 0.3 0.8 0.2 1.10 0.4 0.92 1.82 0.3 0.8 0.8 

8 0.4 0.6 0.2 0.4 0.80 0.8 0.44 1.34 0.6 1.1 0.2 

9 0.6 0.4 0.3 0.6 1.00 0.7 0.46 1.36 0.4 0.9 0.3 

10 0.3 0.8 0.3 0.3 0.89 0.95 0.62 1.52 0.8 1.3 0.3 

Note. Units were selected at random, with each £1 uniformly distributed over [0,1]. 

dom would have passed the exam by getting assistance 
given that, in reality, he or she failed the example and 
did not receive any assistance.6 

This prediction power was facilitated of course with 
the help of two untestable pieces of information: (1) the 
structure of the model (which includes the assumption 
of independent error terms) and (2) the values of the 
model parameters (which include the distribution of 
each exogenous variable). Whereas the latter can often 
he inferred from the data (see section "Identification 
Using Graphs"), the former depends largely on scien­
tific ju<lgmenl. 

Now assume that we have no information whatso­
ever about the underlying model and all we have are 
measurements on Y taken in the experimental study in 
which X is randomized over two levels, X = 0 and X 
= 1. 

Table 5.2 describes the responses of the same 10 
participants (Joe being participant 1) under such ex­
perimental conditions. The first two columns give the 
true potential outcomes (taken from Table 5.1) while 
the last two columns describe the information available 
to the experimenter, where a square indicates that the 
response was not observed.7 Randomization assures us 
that although half of the potential outcomes are not ob­
served, the difference between the observed means in 
the treatment and control groups will converge to the 
average of the true difference, E(Y1 - Y0 ) = 0.9. 

ln our model, since all exogenous variables are in­
dependent, the slope of the regression of Yon X would 

also converge to the average causal effect. Bias will be 
introduced if E1 is correlated with E2 or with E3. How­
ever, such correlation will not bias the average causal 
effect estimated in the experimental study. 

TABLE 5.2. Potential and Observed Outcomes 
in a Randomized Clinical Trial with X Randomized 
over X = 0 and X = 1 

Participant 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Predicted potential 
outcomes 

Yo Y1 

1.05 1.95 

0.44 1.34 

0.56 1.46 

0.50 1.40 

1.22 2.12 

0.66 1.56 

0.92 1.82 

0.44 1.34 

0.46 1.36 

0.62 1.52 

True average treatment 
effect: 0.90 

Observed outcomes 

Yo Y1 

1.05 II 

II 1.34 

II 1.46 

II 1.40 

1.22 II 

0.66 II 

II 1.82 

0.44 II 

II 1.36 

0.62 II 

Study average 
treatment effect: 0.68 
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Relations to the Potential 
Outcome Framework 

Definition 2 constitutes the bridge between SEM and a 
framework called "potential outcome" (Rubin, 1974), 
which is often presented as a "more principled alter­
native" to SEM (Holland, 1988; Rubin, 2004; Sobel, 
1996, 2008; Wilkinson ct al., 1999). Such presentations 
are misleading and misinformed; the two frameworks 
have been proven to be logically equivalent, differing 
only in the language in which researchers are permitted 
to express assumptions. A theorem in one is a theorem 
in the other (Pearl, 2009, pp. 228-231), with Definition 
2 providing the formal basis for both. 

The idea of potential-outcome analysis is simple. Re­
searchers who feel uncomfortable presenting their as­
sumptions in diagrams or structural equations may do 
so in a roundabout way, using randomized trial as the 
ruling paradigm, and interpret the counterfactual Y,(u) 
as the potential outcome of subject u to hypothetical 
treatment X = x, ignoring the mechanisms that govern 
that outcome. The causal inference problem is then set 
up as one of "missing data," where the missing data 
are the potential outcomes Y,(u) under the treatment 
not received, while the observed data are the potential 
outcomes under the received treatments, as shown in 
Table 5.2 

Thus, Y, becomes a new latent variable which reveals 
its value only when X = x, through the relation 

X=x~ Y,= Y 

sometimes written (for binary X) 

(5.7) 

Beyond this relation (known as "consistency as­
sumption"), the investigator may ignore the fact that 
Y, is actually Y itselt~ only measured under different 
conditions (as in Figure 5.4(c)), and proceed to esti­
mate the average causal effect, E(Y,,) - E(Y), with all 
the machinery that statistics has developed for missing 
data. Moreover, since Equation 5.7 is also a theorem 
in the logic of structural counterfactuals (Pearl, 2009, 
Chap. 7) and a complete one,8 researchers in this camp 
are guaranteed never to obtain results that conflict with 
those derived in the structural framework. 

The weakness of this approach surfaces in the prob­
lem formulation phase, where, deprived of diagrams 
and structural equations, researchers arc forced to ex-
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press the (inescapable) assumption set A in a language 
totally removed from scientific knowledge, for exam­
ple, in the form of conditional independencies among 
counterfactual variables (see Pearl, 2010a). 

For example, to express the fact that, in randomized 
trial, X is independent on both E2 and E3 (as in Figure 
5.4(a)), the investigator would need to write the cryptic, 
"strong ignorability" expression X 11 (Z1, Z11 , Y1111 , Ym, 
Y10, Y!l}. To overcome this obstacle, Pearl (2009) has 
devised a way of combining the best features of the two 
approaches. lt is based on encoding causal assumptions 
in the language of diagrams or structural equations; 
translating these assumptions into counterfactual nota­
tion; performing derivation in the algebraic language of 
counterfactuals, using axioms derived from Equation 
5.6; and, finally, interpreting the result in plain causal 
language. The mediation problem discussed in section 
"Mediation" illustrates how such symbiosis clarifies the 
conceptualization and estimation of direct and indirect 
effects, a task that has lingered on for several decades. 

THE TESTABLE IMPLICATIONS 
OF STRUCTURAL MODELS 

This section deals with the testable implications of 
structural models, sometimes called "overidentify­
ing restrictions,'' and ways of reading them from the 
graph. 

The d-Separation Criterion 

Although each causal assumption in isolation cannot be 
tested in nonexperimental studies, the sum total of all 
causal assumptions in a model often has testable impli­
cations. The chain model of Figure 5.3(a), for example, 
encodes seven causal assumptions, each corresponding 
to a missing arrow or a missing double-arrow between 
a pair of variables. None of those assumptions is test­
able in isolation, yet the totality of all seven assump­
tions implies that Z is unassociated with Y in every 
stratum of X. Such testable implications can be read off 
the diagrams using a graphical criterion known as "d­
separation" (Pearl, 1988). 

Definition 3 (cl-separation) 

A set S of nodes is said to block a path p if either ( J) 
p contains at least one arrow-emitting node that is 
in S, or (2) p contains at least one collision node that 



is outside Sand has 110 descendant in S. If S blocks 
all pathsfrom set X to set Y. it is said to "d-separate 
X and Y." and then, it ca11 be shown that variables X 
and Y are i11depe11de11t given S, written X lL YI S.9 

To illustrate, the path U2 • Z • X • Yin Figure 
5.3(a) is blocked by S = ( Z} and by S = {X}, since each 
emits an arrow along that path. Consequently we can 
infer that the conditional independencies U2 11 YI Zand 
U2 lL YIX will be satisfied in any probability function 
that this model can generate, regardless of how we pa­
rametrize the arrows. Likewise, the path U2 • Z • 
X f- Ux is blocked by the null set ( 0}, but it is not 
blocked by S = { Y} since Y is a descendant of the colli­
sion node X. Consequently, the margi nal independence 
U2 11 Ux will hold in the distribution, but U2 1l UxlY 
may or may not hold . This special handling of colli­
sion nodes (or colliders, e.g., Z • X f- U,..) reflects a 

\

)general phenomenon known as. Berkson '.1· pare. 1dox 
1(Berkson, 1946), whereby observations on a common 
,onsequence of two independent causes render those 
causes dependent. For example, the outcomes of two / 
independent coins are rendered dependent by the testi­
mony that at least one of them is a tail. 

The testable implications of any given model are 
vividly advertised by its associated graph G. Each cl­
separation condition in G corresponds to a conditional 
independence test that can be performed on the data to 
support or refute the validity of M. These can easily be 
enumerated by attending to each missing edge in the 
graph and selecting a set of variables that d-separate the 
pair of variables corresponding to that missing edge. 
For example, in Figure 5.6, three of the missing edges 
are 2 1 - 2 2, 2 1 - Y, and 2 2 - X with sep,u-ating sets ( 0}, 
(X, 2 2, 2 3 }, and { 2 1, 2 3 }, respectively. Accordingly, the 
testable implications of M include 2 11122, 2 1 1l YI {X, 
2 2, 2 3 }, and Z2 11XI (21, 23 ). 

ln linear systems, these conditional independence 
constraints translate into zero partial correlations, or 
zero coefficients in the corresponding regression equa­
tions. For example, the three implications translate into 
the following constraints : rz,z, = 0, rn,.xz,z3 = 0, and 

rz,X•Z1ZJ = 0. 
-Such tests are easily conducted by routine regres-

sion techniques, and they provide valuable diagnostic 
information for model modification, in case any of 
them fail (see Pearl , 2009, pp. 143- 145). Software rou­
tines for automatic detection of all such tests, as well as 
other implications of graphical models, are reported in 
Kyono (2010). 

I/ 
I. BACKGROUND 

FIGURE 5.6. A Markovian model illustrating cl-separa­
tion. Error terms are assumed mutually independent and 
not shown explicitly. 

If the model is Markovian (i.e., acyclic with uncor­
related errors) , then the d-separationc~tions are the 
011/y testable implications of the model. lf the model 
contains correlated errors, additional constraints are 
imposed, called "dormant independence" (Shpitser & 
Pearl, 2008) or Verma's constraints (McDonald, 2002; 
Verma & Pearl , 1990), generated by missing links that 
would otherwise be identified (e.g., the missing link 
from Z to Win Figure 5.7). This means that traditional 
algebraic methods of recognizing "overidentified mod­
els," deriving "overidentifying restrictions" and deter­
mining "parameter identification" (Kenny & Milan , I) 
Chapter 9, this volume), 10 can be replaced by simple 
graphical conditions, advertised by nonadjacent vari ­
ables in the model. 

Equivalent Models 

cl- separation also defines conditions for model equiva­
lence that are easily ascertained in the Markovian mod­
els (Verma & Pearl, 1990) as well as semi-Markovian 
models (Ali, Richardson , & Spirtes, 2009). These 

y 

FIGURE 5.7. Showing discrepancy between Lee and 
Hershberger's replacement rule and cl-separation, which 
forbids the replacement of X • Y by X H Y 
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mathematically proven conditions should amend the 
restricted (and error-prone) rules currently prevailing 
in SEM research (Kline, Chapter 7, this volume; Wil­
liams, Chapter 15, this volume), based primarily on the 
replacement rules of Lee and Hershberger (1990). The 
general necessary rule for any modification of a model 
lo preserve equivalence is that the modification not cre­
ate or destroy any cl-separation condition in the modi­
fied graph. 

For example, consider the model of Figure 5.7. Ac­
cording to the replacement criterion of Lee and Hersh­
berger (1990) we can replace the arrow X • Y with a 
double-arrow edge X H Y (representing residual corre­
lation) when all predictors (Z) of the effect variable (Y) 
are the same as those for the source variable (X) (see 
Hershberger, 2006). Unfortunately, the postreplace­
ment model imposes a constraint, rwz-r = 0, that is not 
imposed by the prereplacement model. This can be 
seen from the fact that, conditioned on Y, the path Z • 
Y +- X H Wis unblocked and will becomes blocked if 
replaced by Z • Y H X H W. The same applies to path 
Z • X H W, since Y would cease to be a descendant 
of X. 

Identification Using Graphs: 
The Back-Door Criterion 

Consider an observational study where we wish to 
find the effect of X on Y-for example, treatment on 
response-and assume that the factors deemed rel­
evant to the problem are structured as in Figure 5.6; 
some of these factors may be unmeasurable, such as 
genetic trait or lifestyle; others are measurable, such as 
gender, age, and salary level. Using the terminology of 
section "The LogicJt of SEM," our problem is to deter­
mine whether the LJUery Q = P(y I do(x)) is identifiable 
given the model and, if so, to derive an estimand Q(P) 
to guide the estimation of Q. 

This problem is typically solved by "adjustment," 
that is, selecting a subset of factors for measurement, 
so that comparison of treated versus untreated subjects 
having the same values of the selected factors gives the 
correct treatment effect in that subpopulation of sub­
jects. Such a set of factors is called a "sufficient set" or 
"admissible set" for adjustment. 

The following criterion, named "back-door" in Pearl 
(1993), provides a graphical method of selecting admis­
sible sets of factors, and demonstrates that nonparamet­
ric queries such as Q = P(y I do(r)) can sometimes be 
identified with no knowledge of the functional form of 
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the equations or the distributions of the latent variables 
in M. 

Definition 4 (admissible sets-the back-door 
criterion) 

Asel Sis admissible (or "s1~fficien!'') (f /wo 
conditions hold: 

1. No element of Sis a descendant ofX. 

2. The elements of S "block" all "back-door" paths 
from X to Y-namely, all paths that end with a,1 
arrow pointing to X. 

In this criterion, "blocking" is interpreted as in Defini­
tion I. Based on this criterion we see, for example, in 
Figure 5.6 that the sets {Z1, Z2, Z3 ), {Z1, Z3 ), {W1, Z3 }, 

and {W2, Z3 } are each sufficient for adjustment because 
each blocks all back-door paths between X and Y. The 
set {Z3}, however, is not sufficient for adjustment be­
cause it does not block the path X f- W1 f- Z1 • Z3 f­

Z2 • W2 • Y. 
The intuition behind the back-door criterion is as fol­

lows. The back-door paths in the diagram carry spuri­
ous associations from X to Y, while the paths directed 
along the arrows from X to Y carry causative associa­
tions. Blocking the former paths (by conditioning on S) 
ensures that the measured association between X and 
Y is purely causal, namely, it correctly represents the 
target quantity: the causal effect of X on Y. The reason 
for excluding descendants of X (e.g., W3 or any of its 
descendants) and conditions for relaxing this restriction 
are given by Pearl (2009, pp. 338-341). 

Identifying Parameters and Causal Effects 

The back-door criterion provides a simple solution to 
many identification problems, in both linear and non­
linear models, and is summarized in the next theorem. 

Theorem 1 (causal effects identification) 

For any two di.1joint sets of variables, X and Yin a 
causal diagram G, the causal effect of X m1 Y is given 
by 

P(Y = yldo(X = x)) 

= I,P(Y = y IX= x,S = s)P(S = s) 
(5.8) 

where Sis any set of covariates sati.1fving the back­
door condition cif Definition 4. 
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Since all factors on the right-hand side of the equa­
tion are estimable (e.g., by regression) from preinter­
ventional data, the causal effect can likewise be esti­
mated from such data without bias. 

In linear systems, identified causal effect expressions 
such as Equation 5.8 reduce to sums and products of 
partial regression coefficients. For example, if we wish 
to estimate the total effect 'txy of X on Y in the linear 
version of Figure 5.6, we simply take the regression 
coefficient of Yon X, parlialed on any sufficient set S, 
giving: 

•xi·= ,.l'X•S = ,.l'X•Z,.z, = ,.l'X•IV,.Z, = ' .. 

Current SEM practices do not take advantage of this 
capability to decide identification graphically, prior to 
obtaining data, and lo estimate the identified quantities 
directly, by parlialling out sufficient sets (see Kenny 
& Milan, Chapter 9, this volume). Rather, the prevail­
ing practice is either to engage in lengthy algebraic 
manipulations, or to identify the model in its entirety 
by running ML routines on noisy data and hoping for 
their convergence. This is unfortunate because the tar­
get quantity may often be identifiable when the model 
as a whole is not (see Pearl, 2009, p. 151, for examples). 
Moreover, estimation accuracy deteriorates when we 
allow noisy data of irrelevant variables to corrupt the 
estimation of the target quantity (McDonald, 2004). 
The back-door criterion enables us to focus the iden­
tification of target quantities on the relevant variables 
and extract an identifying estimand by inspection or 
through algorithmic routines (Kyono, 2010). We also 
note that when applied to linear models, all identifica­
tion conditions are valid for feedback systems as well. 

Parametric Identification in Linear SEM 

Remarkably, a close cousin of the back-door criterion 
has resolved an agelong identification problem in linear 
SEMs: Under what conditions can a path coefficient ~xl' 
be estimated by regression, and what variables should 
serve as the regressors? The answer is given by a cri­
terion called "single-door" (Pearl, 2009, p. 150) which 
reads: 

Corollary 1 (the single-door criterion) 

Let ~Xl' be the structural coefficient labeling the 
arrow X • Y and let ryx.s stand.for the X coefficient 
(slope) in the regression of Yon X and S, namely, 
rl'X•S = ;f;:E(Ylx,s). The equality ~Xl' = ryx.s holds if 

I. BACKGROUND 

1. the set S contains no descendant of Y and 

2. S blocks all paths between X and Y, except the 
direct path X • Y 

In Figure 5.7, for example, ~xl' equals ryx,z• or the 
coefficient b1 in the regression Y = b1X + b2Z + E, while 
~nv• labeling the arrow Y • W, is equal to rwr,xz· Note 
that regressing Won Y and X alone is insufficient, for it 
would leave the path Y ~ Z • X H W unblocked. ln a 
similar fashion we obtain ~zl' = ryz,x and ~zx = 1:yz· 

If no set Scan be found thal satisfies the conditions 
of Corollary l then ~-IT cannot be reduced to a single re­
gression coefficient, and other identification techniques 
may be invoked, for example, instrumental variables 
(Brito & Pearl, 2002a). 

Recognizing Instrumental Variables 

Use of instrumental variables is one of the oldest iden­
tification technique devised for linear systems (Wright, 
1928). The method relies on finding a variable Z that 
is correlated with X and is deemed uncorrelated with 
the error term in an equation (see Pearl, 2009, pp. 242-
248, for formal definition). While no statistical test 
can certify a variable as instrument, the d-separation 
criterion permits us to identify such variables in the 
causal graph, and use them to identify parameters that 
do not satisfy the condition of Corollary l. Moreover, 
the graph also shows us how to turn variables into in­
struments when none exists. ln Figure 5.6, for example, 
Z1 is not an instrumental variable for the effect of 23 

on Y because there is a directed path from 23 to Y, via 
W1 and X. Controlling for X will not remedy the situa­
tion because X being a descendant of 23 would unblock 
the path 2 1 • 2 3 f- 2 2 • W2 • Y However, con­
trolling for W1 will render 2 1 a legitimate instrumental 
variable, since all paths connecting 2 1 to Y would go 
through Z.1-

The general criterion is given by the following theo­
rem. 

Theorem 2 (identification using instrumental 
variables) 

Let ~xr standfor the path coefficient assigned to the 
arrow X • Yin a causal graph G. Parameter ~xr is 
ident(fied if there exists a pair (Z, W), where Z is a 
single node in G (not excluding Z = X), and Wis a 
(possibly empty) set of nodes in G, such that: 

1. W consists ofnondescendants of Y, 
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2. W cl-separates Zfrom Y i11 the graph G,nformed 
by re111ovi11g X ~ Y from G, 

3. Zand X are d-co1111ected, given W, i11 GXY. 

Moreover, the esti111a11d induced by the pair (Z, W) is 
given by 

cov(Y,ZIW) 
~\l'=-----

. cov(X,Z I W) 

Additional identification conditions for linear models 
are given in Pearl (2009, Chap. 5), McDonald (2002, 
2004), and Brito and Pearl (2002a, 2002b) and imple­
mentedin Kyono (2010). For example, a sufficient model­
identification condition resulting from these techniques 
is the "non-bow rule" (Brito & Pearl, 2002b), that is, 
that any pair of variables be connected by at most one 
type of edge. Accordingly, one can add a bidirected arc 
between any two nonadjacent variables in Figure 5.6 
and still be able to identify all model parameters.JI In 
nonparametric models, instrumental variables carry 
the unique (and rarely utilized) capability of detecting 
residual (uncontrolled) bias, by comparing P(y Ix, z, w) 
and P(ylx, w). Complete graphical criteria for a effect 
identification in nonparametric models is developed in 
Tian and Pearl (2002) and Shpitser and Pearl (2006a). 

Mediation: Direct and Indirect Effects 

Decomposing Effects, Aims, and Challenges 

The decomposition of effects into their direct and in­
direct components carries theoretical scientific impor­
tance, for it tells us "how nature works" and, therefore, 
enables us to predict behavior under a rich variety of 
conditions and interventions. For example, an investi­
gator may be interested in assessing the extent to which 
the effect of a given var'iable can be reduced by weak­
ening an intermediate process standing between that 
variable and the outcome (Pearl, 2012a). 

Structural equation models provide a natural lan­
guage for analyzing path-specific effects and, indeed, 
considerable literature on direct, indirect, and total ef­
fects has been authored by SEM researchers (Bollen, 
1989), for both recursive and nonrecursive models. 
This analysis usually involves sums of powers of coef­
ficient matrices, where each matrix represents the path 
coefficients associated with the structural equations. 

Yet despite its ubiquity, the analysis of mediation has 
long been a thorny issue in the social and behavioral sci­
ences (Baron & Kenny, 1986; MacKinnon, 2008), pri-
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marily because the distinction between causal param­
eters and their regressional interpretations were often 
conflated, as in Holland (1995) and Sobel (2008). The 
difficulties were further amplified in nonlinear models, 
where sums and products are no longer applicable. As 
demands grew to tackle problems involving categorical 
variables and nonlinear interactions, researchers could 
no longer define direct and indirect effects in terms of 
structural or regressional coefficients, and all attempts 
to extend the linear paradigms of effect decomposition 
to nonlinear systems produced distorted results (Mac­
Kinnon, Lockwood, Brown, Wang, & Hoffman, 2007). 
The counterfactual reading of structural equations 
(Equation 5.6) enables us to redefine and analyze direct 
and indirect effects from first principles, uncommitted 
to distributional assumptions or a particular parametric 
form of the equations. 

Direct Effects 

Conceptually, we can define the direct effect DE, ,,(Y) 12 

as the expected change in Yinduced by changingXfrom 
x to x' while keeping all mediating factors constant at 
whatever value they would have obtained under do(x) 
(Pearl, 2001; Robins & Greenland, 1992). Accordingly, 
Pearl defined direct effect using counterfactual nota­
tion: 

DE,/(Y) = E(Y/.z) - E(Y) (5.9) 

Here, Y,, z represents the value that Y would attain under 
the opir~tion of setting X to x' and, simultaneously, set­
ting Z to whatever value it would have obtained under 
the setting X = x. Given certain assumptions of "no con­
founding," it is possible to show (Pearl, 2001) that the 
direct effect can be reduced to a do-expression: 

DE,_,,(Y) = L,[E(Y I do(x',z), w) 
(5.10) 

-E(Y I do(x,z), w)]P(z I do(x), w)P(w) 

where W satisfies the back-door criterion relative to 
both X • Zand (X, Z) • Y 

ln particuhu-, Equation 5.10 is both valid and iden­
tifiable in Markovian models (i.e., no unobserved con­
founders) where each term on the right can be reduced 
to a "do-free" expression using Equation 5.8 and then 
estimated by regression. 

For example, for the model in Figure 5.8(b), Equa­
tion 5.10 reads 
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(a) 

FIGURE 5.8. A generic model depicting mediation through 
Z (a) with no confounders and (b) with two confounders, 
W1 and W2• 

while for the confounding-free model of Figure 5.8(a) 
we have 

DE, ,,(Y) = I,[E(Y I x',z)-E(Y I x,z)]P(z Ix) (5.12) 

Both Equations 5.11 and 5.12 can be estimated by a 
two-step regression. 

Indirect Effects 

Remarkably, the definition of the direct effect (Equa­
\ tion 5.9) can be turned around and provide an opera­
\ tional definition for the indirect effect (IE)-a concept 

shrouded in mystery and controversy because it is 
impossible, by controlling any of the variables in the 
model, to disable the direct link from X to Y, so as to let 
X influence Y solely via indirect paths. 

The IE of the transition from x to x' is defined as the 
expected change in Y affected by holding X constant, at 
X = x, and changing Z to whatever value it would have 
attained had X been set to X = x'. Formally, this reads 

lEx_,,(Y) ~ E[(Y,.z) - E(Y,)] (5.13) 

which is almost identical to the direct effect (Equation 5.9) 
save for exchangingx and x' in the first term (Pearl, 2001). 

Indeed, it can be shown that, in general, the total ef­
fect (TE) of a transition is equal to the difference be­
t ween the DE of that transition and the IE of the reverse 
transition. Formally, 
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TE,_,,(Y) ~ E(Y,, - Y,) = DEx,x'(Y) - lE,-)Y) (5.14) 

In linear systems, where reversal of transitions amounts 
to negating the signs of their effects, we have the stan­
dard additive frmnula 

TE,_,,(Y) = DEx_,,(Y) + IE,_,,(Y) (5.15) 

Since each term above is based on an independent op­
erational definition, this equality constitutes a formal 
justification for the additive formula used routinely in 
linear systems. 

The Mediation Formula: 
A Simple Solution to a Thorny Problem 

This subsection demonstrates how the solution pro­
vided in equations (12) and (15) can be applied in as­
sessing mediation effects in nonlinear models. We will 
use the simple mediation model of Figure 5.8(a), where 
all error terms (not shown explicitly) are assumed to 
be mutually independent, with the understanding that 
adjustment for appropriate sets of covariates W may be 
necessary to achieve this independence (as in Equa­
tion 5.11) and that integrals should replace summations 
when dealing with continuous variables (Imai, Keele, 
& Yamamoto, 2010). 

Combining Equations 5.12 and 5.14, the expression 
for the IE becomes 

IE,,,(Y) = I,E(Y I x,z)[P(z Ix')- P(z Ix)] (5.16) 

which provides a general formula for mediation effects, 
applicable to any nonlinear system, any distribution (of 
U), and any type of variables. Moreover, the formula is 
readily estimable by regression. Owing to its general­
ity and ubiquity, I have referred to this expression as the 
"mediation formula" (Pearl, 2009, 2012a, 2012b). 

The mediation formula represents the average in­
crease in the outcome Y that the transition from X = x to 
X = x' is expected to produce absent any direct effect of 
X on Y. Though based on solid causal principles, it em­
bodies no causal assumption other than the generic me­
diation structure of Figure 5.8(a). When the outcome Y 
is binary (e.g., recovery, or hiring) the ratio (1 - IE/TE) 
represents the fraction of responding individuals that is 
owed to direct paths, while (1 - DE/TE) represents the 
fraction owed to Z-mediated paths. 

The mediation formula tells us that IE depends only 
on the expectation of the counterfactual Y,,, not on its 
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functional formfy(x, z, uy) or its distribution P(Y,z = y). 
1t calls, therefore, for a two-step regression, which, in 
principle, can be performed nonparametrically. ln the 
Jirst step we regress Y on X and Z, and obtain the es­
timate 

g(x, z) = E(Ylx, z) (5.17) 

for every (x, z) cell. In the second step we !ix x and 
regard g(.r, z) as a function g,(z) of Z. We now estimate 
the conditional expectation of g,(z), conditional on X = 
x' and X = x, respectively, and take the difference 

TE,.,,(Y) = Ezix[g)z) Ix'] - Ezix[g,.(z) Ix] (5.18) 

Nonparametric estimation is not always practical. 
When Z consists of a vector of several mediators, the 
dimensionality of the problem might prohibit the esti­
mation of E(Ylx, z) for every (x, z) cell, and the need 
arises to use parametric approximation. We can then 
choose any convenient parametric form for E(Yl.r, 
z) (e.g., linear, logit, probit), estimate the parameters 
separately (e.g., by regression or maximum likelihood 
methods), insert the parametric approximation into 
Equation 5.16, and estimate its two conditional ex­
pectations (over z) to get the mediated effect (Vander­
Wecle, 2009). 

Let us examine what the mediation formula yields 
when applied to the linear version of Figure 5.8(a), 
which reads 

x= llx 

z=b0 +Px+uz 

y = c0 + ax+ rz + llr 

(5.19) 

with llx, ul', and llz uncorrelated, zero-mean error terms. 
Computing the conditional expectation in Equation 
5.16 gives 

E(Ylx, z) =E(c0 + cu-+rz+ 11r) =en+ ax+rz 

and yields 

IE, , .. (Y) = I,(ax + rz)[P(z Ix')- P(z Ix)] 

= r[E(Z Ix')- E(Z Ix)] (5.20) 

= (x' - x)(Pr) (5.21) 

=(x'-x)(-r-a) (5.22) 

where 't is the slope of the total effect; 
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1: = (E(Ylx') - E(Yl.r))/(x' -x) =a+ Pr 

We thus obtained the standard expressions for indi­
rect effects in linear systems, which can be estimated 
either as a difference 't - a of two regression coeffi­
cients (Equation 5.22) or as a product Pr of two regres­
sion coefficients (Equation 5.21) (see MacKinnon et al., 
2007). These two strategies do not generalize to non­
linear systems; direct application of Equation 5.16 is 
necessary Pearl (2010a). 

To understand the difficulty, assume that the cor­
rect model behind the data contains a product term 8.rz 
added to Equation 5.19, giving 

y = c0 +ax+ rz + 8xz + 11r 

Further assume that we correctly account for this added 
term and, through sophisticated regression analysis, 
we obtain accurate estimates of all parameters in the 
model. lt is still not clear what combinations of parame­
ters measure the direct and indirect effects of X on Y, or, 
more specifically, how to assess the fraction of the total 
effect that is explained by mediation and the fraction 
that is owed to mediation. ln linear analysis, the for­
mer fraction is captured by the product Pr/1: (Equation 
5.21), the latter by the difference (,: - a)/1: (Equation 
5.22), and the two quantities coincide. ln the presence 
of interaction, however, each fraction demands a sepa­
rate analysis, as dictated by the mediation formula. 

To witness, substituting the nonlinear equation in 
Equations 5.12, 5.15, and 5.16, and assuming x = 0 and 
x' = 1, yields the following effect decomposition: 

DE= a+ b08 

TE= Pr 
TE= a+ b08 + P(r+ 8) 

=DE+TE+ Pr. 
We therefore conclude that the portion of output change 
for which mediation would be sufficient is 

TE= Pr 

while the portion for which mediation would be ,zeces­
,rnry is 

TE-DE= py+ po 

We note that, due to interaction, a direct effect can 
be sustained even when the parameter a vanishes and, 
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moreover, a total effect can be sustained even when 
both the direct and indirect effects vanish. This illus­
trates that estimating parameters in isolation tells us 
little about the effect of mediation and, more generally, 
mediation and moderation are intertwined and must be 
assessed jointly. 

lf the policy evaluated aims to prevent the outcome Y 
by ways of weakening the mediating pathways, the tar­
get of analysis should be the difference TE - DE, which 
measures the highest prevention potential of any such 
policy. lf, on the other hand, the policy aims to prevent 
the outcome by weakening the direct pathway, the tar­
get of analysis should shift to IE, for TE - IE measures 
the highest preventive potential of this type of policies. 

The main power of the mediation formula shines 
in studies involving categorical variables, especially 
when we have no parametric model of the data gen­
erating process. To illustrate, consider the case where 
all variables are binary, still allowing for arbitrary in­
teractions and ,U'bitrary distributions of all processes. 
The low dimensionality of the binary case permits both 
a nonparametric solution and an explicit demonstra­
tion of how mediation can be estimated directly from 
the data. Generalizations to multivalued outcomes are 
straightforward. 

Assume that the model of Figure 5.8(a) is valid and 
that the observed data are given by Table 5.3. The fac­
tors E(Ylx, z) and P(Zlx) can be readily estimated as 
shown in the two right-most columns of Table 5.3 and, 
when substituted in Equations 5.12, 5.15, and 5.16, 
yield 

I. BACKGROUND 

DE= (g 10 - g00)(1- h0 ) + (g 11 - g01 )h0 (5.23) 

IE= (h, - h0)(g01 - g00 ) (5.24) 

TE= g11 h1 + g 10(1- h1)- [g01 h0 + g00 (1 -'10 )] (5.25) 

We see that logistic or probit regression is not neces­
sary; simple arithmetic operations suffice to provide a 
general solution for any conceivable data set, regardless 
of the data-generating process. 

Numerical Example 

To anchor these formulas in a concrete example, let us 
assume that X = I stands for a drug treatment, Y = l for 
recovery, and Z = l for the presence of a certain enzyme 
in a patient's blood that appears to be stimulated by 
the treatment. Assume further that the data described 
in Tables 5.4 and 5.5 were obtained in a randomized 
clinical trial and that our research question is the ex­
tent to which Z mediates the action of X on Y or, more 
concretely, the extent to which the drug's effectiveness 
depends on its ability to enhance enzyme secretion. 

Substituting this data into Equations 5.23-5.25 
yields 

DE= (0.40 - 0.20)(1 - 0.40) + (0.80 -0.30)0.40 = 0.32 

TE= (0.75 - 0.40)(0.30 - 0.20) = 0.D35 

TE= 0.80 X 0.75 + 0.40 X 0.25 
- (0.3() X 0.40 + 0.20 X 0.60) = 0.46 

IE/TE= 0.07 DE/TE= 0.696 l - DE/TE= 0.304 

TABLE 5.3. Computing the Mediation Formula 
for the Model in Figure 5.8(a), with X, Y, Z Binary 

Number 
of samples X z y E(Ylx,z)=gxz E(Z Ix)= h, 

n1 0 0 0 n, 
--=9oo 

n2 0 0 n,+n, n3+n, -h 
- 0 

0 1 0 n, 
n, + n, + n3 + n, 

n3 --=901 
n4 0 n3+n, 

ns 0 0 n6 ----910 
n6 0 1 n5+n6 n7+n8 h, 

n5 + n6 + n7 + n8 n1 0 n 
--"-=911 

ns n7+n8 
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TABLE 5.4. The Effect of Drug (X) and Enzyme (Z) 
on Cure Rate 

Percentage cured 
TreatmentX Enzyme present Z g,, = E(Y Ix, z) 

Yes Yes g11 = 80% 

Yes No g10 = 40% 

No Yes g01 = 30% 

No No goo= 20% 

TABLE 5.5. The Effect of Drug (X) on Production 
of Enzyme (Z) 

TreatmentX 

No 
Yes 

Percentage with Z present 

h0 = 40% 

h1 = 75% 

We conclude that 30.4% of all recoveries is owed to the 
capacity of the treatment to enhance the secretion of 
the enzyme, while only 7% of recoveries would be sus­
tained by enzyme enhancement alone. The policy im­
plication of such a study would be that efforts to develop 
a cheaper drug, identical to the one studied but lacking 
the potential to stimulate enzyme secretion, would face 
a reduction of 30.4% in recovery cases. More decisive­
ly, proposals to substitute the drug with one that merely 
mimics its stimulant action on Z but has no direct effect 
on Yare bound for failure; the drug evidently has a ben­
eficial effect on recovery that is independent of, though 
enhanced by, enzyme stimulation. 

ln comparing these results to those produced by con­
ventional mediation analyses, note that conventional 
methods do not define direct and indirect effects in 
a setting where the underlying process is unknown. 
MacKinnon (2008, Chap. 11), for example, analyzes 
categorical data using logistic and probit regressions, 
and constructs effect measures using products and dif­
ferences of the parameters in those regressional forms. 
This strategy is not compatible with the causal interpre­
tation of effect measures, even when the parameters are 
precisely known; IE and DE may be extremely compli­
cated functions of those regression coefficients (Pearl, 
2012b). Fortunately, those coefficients need not be esti­
mated at all; effect measures can be estimated directly 
from the data, circumventing the parametric analysis 
altogether, as shown in Equations 5.23-5.25. 
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Attempts to extend the difference and product heu­
ristics to nonparametric analysis have encountered am­
biguities that conventional analysis fails to resolve. 

The product-of-coefficients heuristic advises us to 
multiply the unit effect of X on Z 

C11 = E(ZIX = 1) - E(ZIX = 0) = '1 1 - h0 

by the unit effect of Z on Y given X, 

Cr= E(YIX =x, Z= 1)-E(YIX = x, Z= 0) = g, 1 -g,0 

but does not specify on what value we should condition 
X. Equation 5.24 resolves this ambiguity by determin­
ing that Cr should be conditioned on X = 0; only then 
would the product C ~ Cr yield the correct mediation 
measure, IE. 

The difference-in-coefficients heuristic instructs us 
to estimate the direct effect coefficient 

Ca= E(YIX= l, Z= z)-E(YIX= 0, Z= z) =g 10 -g 00 

and subtract it from the TE, but does not specify on 
what value we should condition Z. Equation 5.23 de­
termines that the correct way of estimating Ca would 
be to condition on both Z = 0 and Z = l, and take their 
weighted average, with h0 = P(Z = 11 X = 0) serving as 
the weighting function. 

To summarize, the mediation formula dictates that, 
in calculating IE, we should condition on both Z = l 
and Z = 0 and average while, in calculating DE, we 
should condition on only one value, X = 0, and no aver­
age need be taken. 

The difference and product heuristics are both legiti­
mate, with each seeking a different effect measure. The 
difference heuristics, leading to TE - DE, seek to mea­
sure the percentage of units for which mediation was 
necessary. The product heuristics, on the other hand, 
leading to IE, seek to estimate the percentage of units 
for which mediation was sufficient. The former informs 
policies aiming to modify the direct pathway, while the 
latter informs those aiming to modify mediating path­
ways. 

ln addition to providing causally sound estimates for 
mediation effects, the mediation formula also enables 
researchers to evaluate analytically the effectiveness 
of various parametric specifications relative to any as­
sumed model. This type of analytical "sensitivity anal­
ysis" has been used extensively in statistics for param-
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eter estimation but could not be applied to mediation 
analysis, owing to the absence of an objective target 
quantity that captures the notion of indirect effect in 
both linear and nonlinear systems, free of parametric 
assumptions. The mediation formula of Equation 5.16 
explicates this target quantity formally, and casts it in 
terms of estimable quantities. lt has also been used by 
Imai and colleagues (2010) to examine the robustness 
of empirical findings to the possihle existence of un­
measured confounders. 

The derivation of the mediation formula was facili­
tated by taking seriously the graphical-counterfactual­
structural symbiosis spawned by the surgical interpre­
tation of counterfactuals (Equation 5.6). ln contrast, 
when the mediation problem is approached from an 
exclusivist potential-outcome viewpoint, void of the 
structural guidance of Equation 5.6, counterintuitive 
definitions ensue, carrying the label "principal strati­
fication" (Rubin, 2004), which are at variance with 
common understanding of direct and indirect effects 
(Pearl, 20 I le). For example, the direct effect is defin­
able only in units absent of indirect effects. This means 
that a grandfather would be deemed to have no direct 
effect on his grandson's behavior in a family where 
he has had some effect on the father. This precludes 
from the analysis all typical families, in which a father 
and a grandfather have simultaneous, complementary 
influences on children's upbringing. In linear systems, 
to take an even sharper example, the "principal strata 
direct effect" would be undefined whenever indirect 
paths exist from the cause to its effect. The emergence 
of such paradoxical conclusions underscores the wis­
dom, if not necessity of a symbiotic analysis, in which 
the counterfactual notation Y,(u) is governed by its 
structural definition, Equation 5.6.13 

CONCLUSIONS 

This chapter casts the methodology of SEM as a 
causal-inference engine that takes qualitative causal 
assumptions, data, and queries as inputs and produces 
quantitative causal claims, conditional on the input as­
sumptions, together with data-fitness ratings to well­
defined statistical tests. 

Graphical encodings of the input assumption can 
also be used as efficient mathematical tools for identify­
ing testable implications, deciding query identification, 
and generating estimable expressions for causal and 
counterfactual expressions. The logical equivalence of 
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the structural and potential-outcome frameworks was 
discussed and the advantages of a symbiotic approach 
were demonstrated by offering a simple solution to the 
mediation problem for models with categorical data. 

An issue that was not discussed in this chapter is the 
perennial problem of external validity (Shadish, Cook, 
& Campbell, 2002), namely, the conditions under 
which causal conclusions from a study on one popula­
tion can safely he modified and transported to another. 
This problem has recently received a formal treatment 
using nonparametric SEM, and has led to algorithmic 
criteria for deciding the legitimacy of such transport, 
as well as the way it ought to be calibrated (Pearl & 
Bareinboim, 20ll). 

Some researchers would naturally prefer a methodol­
ogy in which claims are less sensitive to judgmental as­
sumptions; unfortunately, no such methodology exists. 
The relationship between assumptions and claims is a 
universal one-namely, for every set A of assumptions 
(knowledge) there is a unique set of conclusions C that 
one can deduce from A given the data, regardless of the 
method used. The completeness results of Shpitser and 
Pearl (2006b) imply that SEM operates at the boundary 
of this universal relationship; no method can do better 
without strengthening the assumptions. 
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NOTES 

I. A more comprehensive account of the history of SEM and its 
causal interpretations is given in Pearl (1998). Pearl (2009, 
pp. 368-374) devotes a section of his book Causality to ad­
vise SEM students on the causal reading of SEM and how to 
defend it against the skeptics. 

2. This is important to emphasize in view of the often heard 
criticism that in SEM, one must start with a model in which 
all causal relations arc presumed known, at least qualitative­
ly. Other methods must rest on the same knowledge, though 
some tend to hide the assumptions under catchall terms such 
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as "ignorability" or "nonconfoundedness." When a priori 
knowledge is not available, the uncertainty can be represent­
ed in SEM by adding links with unspecified parameters. 

3. Causal relationships among latent variables are assessed by 
treating their indicators as noisy measurement of the former 
(Bollen, 1989; Cai & Kuroki, 2008; Pearl, 2010b). 

4. The reason for this fundamental limitation is that no death 
case can be tested twice, with and without treatment. !'or 
example, if we measure equal proportions of deaths in the 
treatment and control groups, we cannot tell how many death 
cases are actually attributable to the treatment itself; it is quite 
possible that many of those who died under treatment would 
be alive if untreated and, simultaneously, many of those who 
survived with treatment would have died if not treated. 

5. Connections between structural equations and a restricted 
class of counterfactuals were first recognized by Simon and 
Rescher (1966). These were later generalized by Balke and 
Pearl (1995), using surgeries (Equation 5.6), thus permitting 
endogenous variables to serve as counterfactual antecedents. 
The "surgery definition" was used in Pearl (2000, p. 417) and 
defended in Pearl (2009, pp. 362-382). 

6. This probability, written P(Y1 = I IX= 0, Y = 0), also known 
as the "probability of causation" (Pearl, 2009, Chap. 9), quan­
tifies "causes of effect" as opposed to "effect of causes," and 
was excluded, prematurely I presume, from the province of 
potential outcome analysis (Holland, 1986). 

7. Such tables are normally used to explain the philosophy 
behind the potential outcome framework (e.g., West & 
Thoemmes, 2010) in which !'1 and l'n are taken as unex­
plained random variables. Here they are defined by, and de­
rived from, a simple structural model. 

8. In other words, a complete axiomization of structural coun­
terfactuals in recursive systems consists of Equation 5.7 and a 
few nonessential details (Halpern, 1998). 

9. See Hayduk et al. (2003), Mulaik (2009), and Pearl (2009, p. 
335) for gentle introduction to d-separation. 

10. The nomenclature "overidentifying restriction" is somewhat 
misleading, because a model may have many testable impli­
cations and none of its parameters identified. Likewise, the 
traditional algebraic distinction between "overidentified" and 
"just identified" parameters is usually misleading (see Pearl, 
2004). 

l I. This rule subsumes Bollen's (1989, p. 95) "recursive rule," 
which forbids a bidirected arc between a variable and ally of 
its ancestors. 

12. Robins and Greenland (1992) called this notion of direct el~ 
feet "Pure" while Pearl called it "Natural," denoted NDE, to 
be distinguished from the "controlled direct effect," which is 
specific to one level of the mediator Z. Here I delete the letter 
N from the acronyms of both the direct and indirect effect, 
and use DE and l E, respectively. 

13. Such symbiosis is now standard in epidemiology research 
(Hafeman & Schwartz, 2009; Joffe & Green, 2009; Petersen, 
Sinisi, & van der Laan, 2006; Robins, 2001; VanderWeele, 
2009: VanderWecle & Robins, 2007) and is making its way 
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slowly toward the social and behavioral sciences (Imai et al., 
2010: Morgan & Winship, 2007). 
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