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NOTES TO SEM LECTURES (in yellow: not explicitly discussed) 

Harry BG Ganzeboom 

Melbourne, October 25 2017  

Lecture 2 

Arguments why you should be doing SEM for the rest of your life (additions in red) 

1. SEM makes you think about the world in terms of causality, which happens to be what science is 

all about. 

2. SEM makes you aware that all we are observing is covariation (correlations); it is the task of a 

scientist to invent a causal theory / model that explains the covariation. The world that we see is 

a correlation matrix. 

3. SEM allows the estimation of a causal process by simultaneous (or: a system of) equations; this 

has certain statistical advantages (to come), but it is also conceptually relevant. 

4. SEM allows for an easy method to include all available data in your estimation, when there are 

missing values. The method is called MLMV (Maximum Likelihood with Missing Values) of FIML 

(Full Information Maximum Likelihood). 

5. SEM makes you distinguish between the facts and your data (observations) and can estimate the 

relationship between the two: measurement error. 

6. SEM allows you not only to diagnose measurement error, but also so to correct for it. 

7. SEM makes you work on measurement models, using information on the relationships between 

indicators and structural variables that are not directly influencing these indicators (full 

information).  

8. SEM makes it possible to distinguish between random and systematic measurement error, and 

can indeed quantify both: reliability and validity coefficients. 

9. SEM makes it possible to estimate reciprocal causal effects. 

A special SE 

A formula dearly missing from most introductory statistics books (and many advanced ones too) is 

the SE(r), the standard error of the pearson correlation. It is approximately: 1/√(N). (In fact it is: 

1/√(N-2) or 1/√(N-3) – this does not make much of a difference.) Say, if you have a sample of 100, 

the sampling fluctuation (the standard deviation of the sampling distribution) is 1/10=0.10. If we 

have a sample of N=25, it is 0.20. So in a sample of 100, a correlation of r=0 would with 95% 

confidence vary between -0.20 and +0.20, and sample values outside this range would be 

statistically significant. In a sample of 25, this range would between -0.40 and +0.40. Remember this 

formula. 
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Caveat: the formula and CI calculations apply under the H0 – in the case the population r=0. It 

cannot be used to build confidence intervals around much stronger correlations. In those cases we 

need a much more complicated procedure, called Fisher Z transformation. 

Notice that our sample in class is around N=10000. SE(r) should then be 1/√(10000) = 0.01. The SE’s 

of our standardized effects are indeed around this value 

The same formula is a rather good approximation of the SE(beta) in a simple regression, which is a 

quantity that arises in Stata (and Mplus?) but not in other programs. However, in multiple regression 

models the SE(beta) is also informed by explained variance, the spread of the X-variables and 

explained variance (just like SE(B)). 

There is something surprising about these SE(beta) in Stata SEM, and for that matter for statistical 

testing in standardized models in Stata SEM: the results differ from the unstandardized model 

(compare t-values, so beta/SE, with B/SE). I have not found an explanation in the Stata SEM 

manuals, but I think the reason must be that beta-values (like r) are bounded in the -1..1 range, and 

so must have asymmetric and truncated confidence intervals. Traditionally, this is solved by a 

formula called Fisher’s Z, which transforms correlations to a quantity 0.5*ln((1+r)/1-r)) = arctan(r), 

which is more or less normally distributed and has symmetric CI, even at values of r close to -1 or +1. 

Missing values 

Missing values are one of the major practical problems in data-analysis and coping with them high 

on the list ten reasons why you would want to be doing SEM for the rest of your life. The remedy in 

SEM is extremely simple: sem (model), method(mlmv).  mlmv stands for Maximum 

Likelihood with Missing Values. When you use this, the following will happen: 

• The estimation of the model becomes more complicated: more iterations, more chances that 

the model does not converge. 
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• Observations with only missing data still will be excluded from the estimation. All the other 

observations will be used, even if they have information on only one variable and do not inform 

about correlations. Stata SEM will print the number of observations, but is otherwise not very 

informative about missing values patterns. 

• The coefficients will come up in the usual way. What you would hope for is that they do not 

differ very much from the ones you obtain from the ‘listwise’ (‘complete case’) analysis, but that 

the SE’s become smaller (and the associated coefficients ‘more significant’), in particular for the 

variables that are most harmed by the listwise deletion. These are the effects NOT for the 

variables with the most missing cases, but the variables with the least missing cases. 

It is extremely easy to do this, and also fairly easy to interpret the results, but it takes quite a bit of 

understanding what you are doing, why you would do this and what could go wrong.  

Missing values can be treated in two principally correct ways: 

• Multiple imputation (MI). In (single) imputation, you try to guess what the correct value would 

have been, given what you know about a case. One way to do this is to use the mean as 

imputation, which is the same as saying that you have no other information about the case that 

informs you about the true value. Other methods are to look for similar cases in the data (either 

by sorting of by using a predicting equation) and borrow a value from a similar case (nearest 

neighbor imputation). Modern techniques of multiple imputation add three steps to this 

procedure: 

o Do not only impute the cases as precise as you can, but also add a random component 

to the imputation that is similar to the random variation among the similar cases for 

which you have a valid observation. 

o Do this multiple (10-20) times. This leads to 10-20 different datasets that you are now 

going to analyze jointly. 

o Use some voodoo formulas, invented by Donald Rubin, to calculate unbiased standard 

errors, from the combination of these imputed files. The computer programs do this for 

you. 

• MI Procedures are available in SPSS, Stata and many other programs. The principal choice you 

have to make is what variables you use to generate the best imputations. It is easy, but 

(computer) time consuming to use a great many, relevant and irrelevant ones. Analysis of the 

multiply imputed files is also somewhat time-consuming, but again: computer time consuming. 

• Maximum likelihood (ML) estimation, like in Stata’s SEM models. This procedure is based on the 

model that you specify (your structural and measurement model) and then tries to find best 

fitting parameters given all (partial) evidence that the data provide. In case this data is 

incomplete (missing values), the iterative procedures are fairly complex and time-consuming.  

• In mlmv (elsewhere called FIML – Full Information Maximum Likelihood) the aim of the 

procedure clearly is to use the part of the data that is observed. In multiple imputation, the 

misunderstanding that often arises, is that you want to use data that are NOT observed – which 
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is not true, but the imputation procedure makes you think so. It is all about bringing back in the 

data that you HAVE observed. 

• Although the MI and ML approaches appear to be radically different, they are asymptotically (in 

the long run) equivalent!!  There are some practical differences: 

o In MI it is easier to take a whole lot of variables into account, including irrelevant ones. 

This is also possible in ML, but less practical. 

o In MI the missing values imputation is a separate step from the model building step – 

while the essence of ML is that this happens simultanously. In practical work MI is often 

more convenient to do. 

o MI takes more time, but goes quicker. 

• The background needed to operate either procedure is that you try to understand how your 

missing values arise in the first place. There are three possibilities: 

o MCAR (Missing Completely at Random). A simple lottery has determined the MV 

pattern. In this case the true correlation matrix (not observed), the pairwise correlation 

matrix and the listwise correlation matrix tend to be the same (although based on 

different N). 

o MAR (Missing at Random). A more complicated lottery has determined the MV patterns, 

namely a lottery that knows your true (population) model and then started to generate 

MV’s in a random way on the predicted values from that model. In this case the true 

correlation matrix, the pairwise matrix and the listwise matrix are different (and the 

listwise matrix is biased), but the model estimated on the pairwise matrix can be correct 

(=equal to the population model), but we cannot know this, only hope for it. 

o MNAR (Missing Not at Random). The MVs are not even determined by lottery, but by 

evil golems: the true values have disappeared in ‘systematic’ ways, but you have no 

information on how this happened. This case cannot be repaired by MI of ML – you need 

‘selection [heckman] models’ – and they do not work well if you have no information on 

the MV mechanism. 

So, in MCAR everything that you do will work, in MAR you have to come up with the right 

model underlying the pattern of associations in the population. 

It is always useful to consider your analysis to be an instance of MCAR. Whether data more 

or less fit this condition can be tested by comparing the pairwise and listwise correlation 

matrix. If these are the same, the parameter estimates deriving from it will be the same. But 

if so, you could ask yourself: “Why bother? Whatever I do, ML, MI or nothing at all, my 

estimated model (coefficients) will tend to be the same...” True, and that shows you why 

you should bother to do ML or MI: the intended effect is NOT on the coefficients (point 

estimates), but ON THE STANDARD ERRORS! You do all of this to increase the power of your 

model. If the coefficients change after missing values treatment, you should start worrying. 
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What if the listwise and pairwise correlations are different? This would show that your data are not 

MCAR, but they could still be either MAR or MNAR. The first thing to notice in this situation now is to 

understand that using the listwise correlations is by no means better or more representative than 

using the pairwise correlations. On the contrary, the listwise correlations will be biased. So, if you 

are not going to be able to apply selection models, there is little alternative than assume MAR and 

invent the best model you can in a MLMV mode. 

There are two practical disadvantages to MLMV in Stata: 

• Models take longer to converge or may not converge at all. If so, you must usually rethink your 

design and the missing values pattern and one good place to start would be the pairwise 

correlation matrix: pwcorr _all, obs.  

• MLMV estimation in Stata has the particular inconvenience that estat, residuals does 

not work, while it is quite useful to look at these residuals, in particular when you have 

standardized the observed variables and you are looking at a correlation (not covariance) matrix. 

(In LISREL you can obtain these residuals.) 

Elements of a Stata SEM model 

The general formula for a Stata SEM model is: 

sem (effect) (effect) (effect) (etc) if(condition) [weight] , var() 

covar() standardized method(mlmv) iterate(#) 

(effect) can be one of the following: 

(var) This would imply that the model fits the covariances between var and all other exogenous 

variables 

(x → y) Causal effect of x on y 

(y  x)  Causal effect of x on y. So the direction of the arrow does not matter. 

(X → x)  Measurement effect of latent variable X on observed variable x. We call these 

effects ‘measurement’, and the output groups them accordingly, but there is no principled 

distinction between causal and measurement effects. 

(X → x1 x2 x3)  Does three measurement effects at once. This is shorter, but you cannot 

have constraints in this form. 

(effect@#)  constrains the effect to be equal to #; very often #=1 to fix a reference 

effect, or a latent variance in exogenous variables 

(effect@name)  constrains the effect to be equal to name, which becomes relevant when 

name also appears in another (effect@name), in which case we obtain an equality constraint. It 

is common practice to use single or double characters (a b c aa bb cc) for this, but you can 

invent your own name. 
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var(X@1) constrains the variance of the latent variable X at 1 (so standardized at the latent 

level). This can only be applied to exogenous latent variables. 

var(e.x@0) Residuals in variables can be addressed using e.var. This particular specification 

would say that there is no residual variance in x, which would imply that x is identical to its 

underlying latent variable X. This is sometime useful when you want to include observed variables 

in your model. 

covar(e.x1*e.x2) Specifies that a covariance of residuals is to be estimated between x1 and 

x2. These are also known as correlated residuals. 

NB: For some mysterious reason the var and covar specification should be after the comma, as if 

they are a sort of options. They are not, they are parameters of the model. 

if(condition) specifies a selection of the sample, e.g. if(age > 30) would exclude the 

younger cases. 

[weight] applies the weight if present in the data. 

Useful post-estimation commands 

sem, standardized redisplays the model in standardized format 

estat mindices displays the modification indices, which indicate L2 changes of you would 

introduce an additional parameter in the model. Unlike with residuals, the logic of modification 

indices is that of an influence statistic: how would the model fit change? 

estat residuals displays the difference (residuals) between the fitted and the observed 

covariances. You obtain these in unstandardized form, even if you have standardized your model. 

But residual correlations are in fact easier to interpret than residual covariances, so this is one 

reason why I recommend to run your models also with standardized data. 

estat residuals, normalized  and estat residuals, standardized display 

the residuals relative to the sampling distribution – so as t-test. This is not the same as residuals on 

standardized data. 

estat teffects shows total, direct and indirect effects, with associated SE and t-tests 

estat teffect, standardized shows total, direct and indirect effects in standardized form, 

with associated SE and t-tests 

estat gof, stat(all) will show some of the fit statistics that many SEM-people are so hung-

up about. Important ones are: 

• LR-chi2 test will test the significance of the difference between the observed correlation matrix 

and the correlation matrix. Can be used to argue that your model fits well, but also used in 

nested model comparisons. LR-chi2 is heavily dependent upon sample size when there is any 

misfit in the data. 

• CFI, TTI are statistics that are not sensitive to N. Often reported, should be over 0.95 
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• RMSEA Root Mean Squared Error of Approximation. This is basically a function of the residuals 

adjusted for sample size. It comes with a CI and a test whether it is significantly different from 

.05. After LR-chi2 this is the most often reported fit measure. 

It is interesting that Stata SEM is not overly concerned with fit statistics, unlike LISREL and other SEM 

programs. I think this is a good thing: when comparing models, we should first concentrate on how 

parameters change and are sensitive to model specification, before looking at the fit statistics. 

Standardization and the standardized solution 

Standardization means that variables are expressed as Z values: variance = SD = 1, and mean = 0. By 

standardizing variables their values become comparable, and so become effects in regression 

models. In factor analysis we are so used to standardization of both the latent and observed 

variables, that we would think it cannot be done in a different way; it fact we can, even in SPSS. 

In SEM you can distinguish between three sorts of standardization: 

• Standardization of only the observed variables 

• Standardization of only the latent variables 

• Standardization of the latent and the observed variables (complete standardization).  

If you ask Stata for a standardized solution, you get the complete standardization. However, I have 

not been able to interpret the intercepts in this solution. If you want the intercepts to be zero, you 

have to standardize the variables beforehand yourself. 

Standardized solutions can also be hard to interpret in multiple groups or with missing values 

treated with mlmv. 

Generally, I like to start my analysis with standardized observed variables (note that the test file 

contains these). In LISREL, estimation goes a lot quicker when you start from standardized data – this 

I have not observed in Stata SEM.  

However, what constitutes properly standardized variables in a file with missing values is not trivial – 

and may change with different selections and treatments of variables with missing values. 

Fortunately, the variations in solutions are often not large, but it can be a lot of work to get it 

straight. 

Developing the intergenerational occupational reproduction model 

The ISSP project and the double indicator design 

The data we have been working with are from the 2009 Social Inequality IV module of the 

International Social Survey Programme. See www.issp.org for more information and access to the 

data (which are free for anyone). The ISSP is a social attitudes survey that runs around the world in 

about 45 countries. The 2009 data have now been collected in 43 countries (some as late as 2014). 

The module deals with attitudes about social inequality, but it also includes measures needed for a 

complete intergenerational status attainment model, which includes father’s, mother’s, 

respondent’s first and current/last occupations (and respondent’s education). These occupations in 

http://www.issp.org/
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ISSP are to be measured by an open question that is post-coded into the 4-digit International 

Standard Classification of Occupation 1988 [ISKO in your data). ISKO is a detailed nominal 

classification. To make the data fit for metric analysis, these codes are converted into the 

International Socio-Economic Index of occupational status [ISEI], a number between 10 and 90 that 

can be treated as interval. 

Introducing the double indicator design for measuring occupations 

The unique feature of the ISSP-2009 data then is that these four occupations were also measured 

with a second indicator, which is a crude question on the occupations. These four questions were 

optional in the ISSP design, and some countries decided to ask them, others did not. 16 countries 

participated in this research design one way or another, but not all did it in the same way. 10 

countries implemented the complete research design (these countries are indicated by the variable 

“complete” in the data-file), 6 others did something of relevance, but somewhat differently. The 

crude occupation questions are also scaled in the ISEI metric. 

Before embarking on modelling the full data, we try our hands on the relationship between father’s 

occupation and respondent’s (male and female offspring) occupations, which is a relationship of 

core interest to stratification researchers as the primary indicator of the openness / closedness of 

societies. Both occupation are measured using detailed indicators (fisei, isei) and a crude showcard 

inidicator (fosei, osei).  There are several research questions that can be answered by these data. 

One is about the correlation between father’s and offspring’s occupation, corrected for 

measurement error. Another important question is about the measurement quality of detailed and 

crude occupation measures. This is a question with great relevance as many researchers hate to do 

the costly occupation coding. However, conventional wisdom is that occupations cannot be validly / 

reliably measured with a showcard – the measurement quality of the crude questions muse 

somehow be inferior. 

Let’s start by look at a few descriptives of the data at hand: 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

       fisei |      8142    36.14742    20.79816       9.29      89.35 

       fosei |      8356    35.29344    14.85599         16         70 

        isei |      7146    44.33541    21.36431       9.29      89.35 

        osei |      7120    42.24059    15.44771         16         70 

 

. sum fisei fosei isei osei if fisei < 100 & osei < 100 & fosei < 100 & isei < 100 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

       fisei |      6121    37.79409    20.74594       9.29      89.35 

       fosei |      6121    36.04313    15.14541         16         70 

        isei |      6121    44.75557    21.35317       9.29      89.35 

        osei |      6121    42.58487    15.43417         16         70 

 

We have a total of 9144 cases in 10 countries.  

• All variables have missing values, but to a different degree. 
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• Fathers have on average lower status occupations than their offspring, according to both 

measurement methods. 

• Despite being both expressed in the ISEI scale, the detailed measures have more variation that 

the crude measures. 

• The descriptive are very much alike between pairwise and listwise, in particular with the crucial 

element, the SD. 

Let have a look at the correlations between these four variables: 

. corr fisei fosei isei osei 

(obs=6121) 

 

             |    fisei    fosei     isei     osei 

-------------+------------------------------------ 

       fisei |   1.0000 

       fosei |   0.7651   1.0000 

        isei |   0.3714   0.3656   1.0000 

        osei |   0.3358   0.3689   0.7347   1.0000 

 

. pwcorr fisei fosei isei osei, obs 

 

             |    fisei    fosei     isei     osei 

-------------+------------------------------------ 

       fisei |   1.0000  

             |     8142 

             | 

       fosei |   0.7620   1.0000  

             |     8062     8356 

             | 

        isei |   0.3663   0.3582   1.0000  

             |     6389     6520     7146 

             | 

        osei |   0.3309   0.3669   0.7356   1.0000  

             |     6331     6500     6881     7120 

 

It is important to see that the pairwise and listwise correlations are not terribly different. This is 

good argument to assume that the missing values occur MCAR. 

The basic model is: 

. sem (FOCC -> fisei) (FOCC -> fosei) (OCC -> isei) (OCC -> osei) 

(3023 observations with missing values excluded) 

 

------------------------------------------------------------------------------ 

             |                 OIM 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Measurement  | 

  fisei <-   | 

        FOCC |          1  (constrained) 

       _cons |   37.79409   .2651468   142.54   0.000     37.27441    38.31376 

  -----------+---------------------------------------------------------------- 

  fosei <-   | 

        FOCC |   .7529738   .0173031    43.52   0.000     .7190603    .7868872 

       _cons |   36.04313   .1935684   186.20   0.000     35.66374    36.42252 

  -----------+---------------------------------------------------------------- 

  isei <-    | 

         OCC |          1  (constrained) 

       _cons |   44.75557   .2729077   164.00   0.000     44.22068    45.29046 

  -----------+---------------------------------------------------------------- 

  osei <-    | 

         OCC |    .695508   .0171468    40.56   0.000     .6619009     .729115 

       _cons |   42.58487    .197259   215.88   0.000     42.19825    42.97149 

-------------+---------------------------------------------------------------- 

 var(e.fisei)|   111.1247   7.010232                      98.20033      125.75 
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 var(e.fosei)|   48.36983   3.907018                      41.28761    56.66689 

  var(e.isei)|   107.8232     8.1016                      93.05823    124.9308 

  var(e.osei)|   69.80716   4.007731                      62.37797    78.12116 

    var(FOCC)|    319.199   10.07867                       300.044    339.5769 

     var(OCC)|   348.0603   11.22255                      326.7451     370.766 

-------------+---------------------------------------------------------------- 

cov(FOCC,OCC)|   160.2708   6.092257    26.31   0.000     148.3302    172.2114 

------------------------------------------------------------------------------ 

LR test of model vs. saturated: chi2(1)   =     38.27, Prob > chi2 = 0.0000 

 

Notes: 

• I run the model as a factor-analytic model, i.e. with a covariance between FOCC and OCC. This 

could be replace by a causal effect (FOCC → OCC). 

• The model LR (38.3, df=1) is statistically significant, which implies that the fitted covariance 

matrix does not fit the observed matrix. However, RMSEA = 0.054, pclose < 0.12, which means 

that we could get away with it. 

Given that the detailed and crude measures have different variances, is is hard to compare their 

loadings. For this we could model the standardized indicators. 

. sem (FOCC -> zfisei) (FOCC -> zfosei) (OCC -> zisei) (OCC -> zosei) 

(3023 observations with missing values excluded) 

 

------------------------------------------------------------------------------ 

             |                 OIM 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Measurement  | 

  zfisei <-  | 

        FOCC |          1  (constrained) 

       _cons |   .0080079   .0127268     0.63   0.529    -.0169361    .0329519 

  -----------+---------------------------------------------------------------- 

  zfosei <-  | 

        FOCC |   1.079337   .0272689    39.58   0.000     1.025891    1.132783 

       _cons |   .0060604   .0127093     0.48   0.633    -.0188493    .0309701 

  -----------+---------------------------------------------------------------- 

  zisei <-   | 

         OCC |          1  (constrained) 

       _cons |   .0242117    .012779     1.89   0.058    -.0008346     .049258 

  -----------+---------------------------------------------------------------- 

  zosei <-   | 

         OCC |   1.016364   .0274298    37.05   0.000      .962603    1.070126 

       _cons |   .0203657   .0127892     1.59   0.111    -.0047005     .045432 

-------------+---------------------------------------------------------------- 

var(e.zfisei)|   .2949427   .0171611                      .2631545    .3305707 

var(e.zfosei)|   .1773222   .0192713                      .1433028    .2194176 

 var(e.zisei)|   .2867443   .0185937                       .252522    .3256044 

 var(e.zosei)|   .2648152   .0190569                       .229979    .3049284 

    var(FOCC)|   .6964783   .0236393                      .6516535    .7443863 

     var(OCC)|    .712829   .0248689                      .6657161    .7632762 

-------------+---------------------------------------------------------------- 

cov(FOCC,OCC)|   .3150088    .013445    23.43   0.000     .2886572    .3413604 

------------------------------------------------------------------------------ 

LR test of model vs. saturated: chi2(1)   =     22.85, Prob > chi2 = 0.0000 

 

• The fit changes (less misfit) – it should not. I will later explain why. 

• We now can compare the loading of crude to detailed, and between the crudes for fathers and 

offspring. The conclusion would be that crude is at least as good as detailed, and that the 

measurement models are not too different between fathers and offspring. We can test this as 

follows: 
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. sem (FOCC -> zfisei) (FOCC -> zfosei@a) (OCC -> zisei) (OCC -> zosei@a) 

(3023 observations with missing values excluded) 

 

------------------------------------------------------------------------------ 

             |                 OIM 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Measurement  | 

  zfisei <-  | 

        FOCC |          1  (constrained) 

       _cons |   .0080079   .0127566     0.63   0.530    -.0169945    .0330103 

  -----------+---------------------------------------------------------------- 

  zfosei <-  | 

        FOCC |   1.050094   .0206057    50.96   0.000     1.009707     1.09048 

       _cons |   .0060604   .0126884     0.48   0.633    -.0188084    .0309292 

  -----------+---------------------------------------------------------------- 

  zisei <-   | 

         OCC |          1  (constrained) 

       _cons |   .0242117   .0127465     1.90   0.058    -.0007709    .0491943 

  -----------+---------------------------------------------------------------- 

  zosei <-   | 

         OCC |   1.050094   .0206057    50.96   0.000     1.009707     1.09048 

       _cons |   .0203657   .0128152     1.59   0.112    -.0047516     .045483 

-------------+---------------------------------------------------------------- 

var(e.zfisei)|   .2793439   .0148253                      .2517471    .3099659 

var(e.zfosei)|   .1951186   .0159068                       .166305    .2289243 

 var(e.zisei)|     .30525   .0150268                      .2771742    .3361696 

 var(e.zosei)|     .24522   .0158858                      .2159801    .2784186 

    var(FOCC)|   .7167259   .0207987                      .6770989    .7586721 

     var(OCC)|   .6892432    .020601                      .6500259    .7308264 

-------------+---------------------------------------------------------------- 

cov(FOCC,OCC)|   .3143737   .0134319    23.41   0.000     .2880477    .3406997 

------------------------------------------------------------------------------ 

LR test of model vs. saturated: chi2(2)   =     25.91, Prob > chi2 = 0.0000 

 

• The LR difference is 25.9-22.9 = 3.0 (df=1). This is not a significant difference, as the magic 

number is 3.84 in a 1 df chi2-test. 

• Crude is a marginally better measure than detailed. We could constrain the crude and detailed 

loadings to be equal, but the difference turns out to be significant. 

Notice that the model is still unstandardized at the latent level. An interesting way to do 

standardization, is: 

. sem (FOCC -> zfisei@a) (FOCC -> zfosei@a) (OCC -> zisei@a) (OCC -> zosei@a), var(FOCC@1) 

var(OCC@1) 

(3023 observations with missing values excluded) 

------------------------------------------------------------------------------ 

             |                 OIM 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Measurement  | 

  zfisei <-  | 

        FOCC |   .8594736   .0069665   123.37   0.000     .8458195    .8731278 

       _cons |   .0080079   .0127053     0.63   0.529     -.016894    .0329098 

  -----------+---------------------------------------------------------------- 

  zfosei <-  | 

        FOCC |   .8594736   .0069665   123.37   0.000     .8458195    .8731278 

       _cons |   .0060604   .0125701     0.48   0.630    -.0185765    .0306973 

  -----------+---------------------------------------------------------------- 

  zisei <-   | 

         OCC |   .8594736   .0069665   123.37   0.000     .8458195    .8731278 

       _cons |   .0242117   .0128684     1.88   0.060    -.0010098    .0494332 

  -----------+---------------------------------------------------------------- 

  zosei <-   | 

         OCC |   .8594736   .0069665   123.37   0.000     .8458195    .8731278 

       _cons |   .0203657   .0128705     1.58   0.114    -.0048601    .0455915 

-------------+---------------------------------------------------------------- 

var(e.zfisei)|   .2493806   .0087714                      .2327682    .2671785 
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var(e.zfosei)|   .2284629   .0085638                        .21228    .2458795 

 var(e.zisei)|    .274909   .0096123                      .2567003    .2944092 

 var(e.zosei)|   .2752546   .0096155                      .2570392    .2947608 

    var(FOCC)|          1  (constrained) 

     var(OCC)|          1  (constrained) 

-------------+---------------------------------------------------------------- 

cov(FOCC,OCC)|   .4480227    .012523    35.78   0.000      .423478    .4725674 

------------------------------------------------------------------------------ 

LR test of model vs. saturated: chi2(4)   =     33.92, Prob > chi2 = 0.0000 

 

• The LR difference with the previous model 33.9-25.9 = 8.0 is marginally significant with DF=2. 

• We obtain in this model an error corrected correlation between FOCC and OCC of 0.45, which is 

substantially stronger than the four observed correlations (which are around 0.36). 

• Otherwise, we conclude that the crude measure has better measurement quality by a small, but 

statistically significant margin. 

However, lets inspect the residual correlations: 

. estat residuals 

 

Residuals of observed variables 

 

  Mean residuals 

 

                 |    zfisei     zfosei      zisei      zosei  

    -------------+-------------------------------------------- 

             raw |     0.000      0.000      0.000      0.000  

    ---------------------------------------------------------- 

 

  Covariance residuals 

 

                 |    zfisei     zfosei      zisei      zosei  

    -------------+-------------------------------------------- 

          zfisei |    -0.004                                   

          zfosei |    -0.004     -0.002                        

           zisei |     0.010     -0.004      0.004             

           zosei |    -0.012      0.005      0.003      0.002  

    ---------------------------------------------------------- 

 

As I model z-standardized observed variables, these are actually residual correlation, not 

covariances. So it is easy to see that we are looking at very small numbers. However, there is still 

something of a pattern, which indicates a method effect: same-method correlations have a positive 

residual, different-method correlations have a negative residual. The presence of such method 

effects is of considerable interest when we try to answer the research question of measurement 

quality of crude and detailed measurement.  

An interesting model to look at is: 

. sem (FOCC -> zfisei@a) (FOCC -> zfosei) (OCC -> zisei@a) (OCC -> zosei), var(FOCC@1) 

var(OCC@1) covar(e.zfosei*e.zosei) covar(e.zfisei*e.zisei) 

(3023 observations with missing values excluded) 

 

-------------------------------------------------------------------------------------- 

                     |                 OIM 

                     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------------+---------------------------------------------------------------- 

Measurement          | 

  zfisei <-          | 

                FOCC |   .8423736   14.47622     0.06   0.954    -27.53049    29.21523 

               _cons |   .0080079   .0127642     0.63   0.530    -.0170095    .0330252 

  -------------------+---------------------------------------------------------------- 

  zfosei <-          | 

                FOCC |    .898343   15.43805     0.06   0.954    -29.35968    31.15637 

               _cons |   .0060604   .0127324     0.48   0.634    -.0188947    .0310155 

  -------------------+---------------------------------------------------------------- 

  zisei <-           | 
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                 OCC |   .8423736   14.47622     0.06   0.954    -27.53049    29.21523 

               _cons |   .0242117   .0127418     1.90   0.057    -.0007618    .0491852 

  -------------------+---------------------------------------------------------------- 

  zosei <-           | 

                 OCC |   .8543277   14.68165     0.06   0.954    -27.92118    29.62983 

               _cons |   .0203657   .0127683     1.60   0.111    -.0046597    .0453912 

---------------------+---------------------------------------------------------------- 

        var(e.zfisei)|   .2876689   24.38876                      1.97e-73    4.21e+71 

        var(e.zfosei)|   .1852828   27.73733                      6.9e-129    5.0e+126 

         var(e.zisei)|   .2841755   24.38876                      2.52e-74    3.21e+72 

         var(e.zosei)|   .2680284   25.08587                      5.76e-81    1.25e+79 

            var(FOCC)|          1  (constrained) 

             var(OCC)|          1  (constrained) 

---------------------+---------------------------------------------------------------- 

cov(e.zfisei,e.zisei)|   .0153171   10.66132     0.00   0.999    -20.88049    20.91113 

cov(e.zfosei,e.zosei)|   .0158854   11.53103     0.00   0.999    -22.58453     22.6163 

        cov(FOCC,OCC)|   .4371408   .0127293    34.34   0.000     .4121918    .4620898 

-------------------------------------------------------------------------------------- 

LR test of model vs. saturated: chi2(0)   =      0.58, Prob > chi2 =      . 

 

• The model seems to converge without much problem, but the results are very strange. We 

obtain the two requested effects, but they are not significant. As a matter of fact, none of 

measurement effects is significant anymore. This is a sign that the model is not identified, 

despite having 0 DF. It is also strange that the fit is not perfect, with DF=0. 

• Note that the point estimates of the loadings are still believable – they suggest a minor edge for 

crude measurement. Also note that the FOCC, OCC correlation is well estimated and did not 

change. 

Tim suggested at this point to equalize the two residual correlations. This would help to identify the 

model, but is substantively unattractive: we want to know about the difference between crude and 

detailed. A better idea is to “buy your DF’s somewhere else”, by bringing in auxiliary variables. 

These should be other variables that are correlated with these occupations, but can be assumed to 

operate primarily via the latent occupations. There are several possible choices here: education, 

income, other occupations (such as mother’s). Best is the combination of education and income, but 

I will show this with only education: 

. sem (FOCC -> zfisei@a) (FOCC -> zfosei) (OCC -> zisei@a) (OCC -> zosei) (zdegree) , 

var(FOCC@1) var(OCC@1) covar(e.zfosei*e.zosei) covar(e.zfisei*e.zisei) 

(3031 observations with missing values excluded) 

---------------------+---------------------------------------------------------------- 

Measurement          | 

  zfisei <-          | 

                FOCC |   .8604452   .0085297   100.88   0.000     .8437273    .8771632 

               _cons |   .0085135   .0120081     0.71   0.478     -.015022    .0320489 

  -------------------+---------------------------------------------------------------- 

  zfosei <-          | 

                FOCC |   .8928553   .0138504    64.46   0.000      .865709    .9200015 

               _cons |   .0066523   .0118622     0.56   0.575    -.0165973    .0299019 

  -------------------+---------------------------------------------------------------- 

  zisei <-           | 

                 OCC |   .8604452   .0085297   100.88   0.000     .8437273    .8771632 

               _cons |   .0245131   .0097533     2.51   0.012     .0053971    .0436291 

  -------------------+---------------------------------------------------------------- 

  zosei <-           | 

                 OCC |   .8278169   .0103843    79.72   0.000     .8074639    .8481698 

               _cons |   .0207398   .0100736     2.06   0.040      .000996    .0404837 

---------------------+---------------------------------------------------------------- 

        var(e.zfisei)|   .2713105   .0144562                      .2444062    .3011765 

        var(e.zfosei)|   .2031964   .0155632                      .1748723    .2361082 

         var(e.zisei)|   .2442218   .0092756                      .2267021    .2630955 

         var(e.zosei)|   .3081388     .00946                      .2901444    .3272493 

            var(FOCC)|          1  (constrained) 

             var(OCC)|          1  (constrained) 
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---------------------+---------------------------------------------------------------- 

cov(e.zfisei,e.zisei)|   .0081444   .0059989     1.36   0.175    -.0036133     .019902 

cov(e.zfosei,e.zosei)|     .02444   .0061145     4.00   0.000     .0124557    .0364242 

    cov(zdegree,FOCC)|   .4150359   .0109969    37.74   0.000     .3934824    .4365894 

     cov(zdegree,OCC)|   .7302173   .0064408   113.37   0.000     .7175936    .7428409 

        cov(FOCC,OCC)|   .4369346   .0123854    35.28   0.000     .4126596    .4612096 

-------------------------------------------------------------------------------------- 

LR test of model vs. saturated: chi2(2)   =      6.29, Prob > chi2 = 0.0431 

 

• Observe that adding the auxiliary variable solves the identification problem. All the odd results 

have disappeared. 

• The two method effects are different: negligible and non-significant for detailed, and statistically 

significant, but also not terribly strong for crude. 

• Crude seems to be working better for father than for offspring, detailed for offspring. A pooled 

estimation would make them almost equal. 

Identification of SEM models 

As we are getting to more complicated models, an important question becomes whether these 

models are identified. This is not a trivial matter, even for those who study this topic mathematically. 

The Stata SEM manual says about this: 

… books have been written on this subject, and we will refer you to them. A few are Bollen (1989), Brown (2006), 
Kline (2011), and Kenny (1979). We will refer you to them, but do not be surprised if they refer you back to us. Brown 
(2006, 202) writes, “Because latent variable software programs are capable of evaluating whether a given model is 
identified, it is often most practical to simply try to estimate the solution and let the computer determine the model’s 
identification status.” That is not bad advice. 

To which I must add, that the non-identification of a model may not be immediately apparent from 

the output. E.g. in our case we still obtain convergence, good L2 and good point estimates. If you do 

not study your results closely, in particular by comparing different models, you can easily get it 

wrong. The most interesting part to study is the SE column. The other part of interest is to check 

how your DF develops, and in particular whether you understand the development in conformity 

with the rule: DF = number of correlations – number of estimated parameters.  

Some general guidelines on how to develop a SEM model 

• Prepare your data in both the natural metric and in z-standardized metric. If your variables do 

not have an interesting natural metric, it is probably a good idea to standardize them to begin 

with. 

• Study the univariate descriptives in a complete case and in an available case scenario to treat 

missing values.  

• Also compare the correlations between variables of interest in a listwise and pairwise matrix. If 

the two different treatments of missing values give more or less the same numbers, be happy, 

the data are MCAR. Otherwise try to understand what kind of process is going on. 

• Develop first your measurement model in a factor-analytic design, i.e. with saturated 

covariances / correlations between latent variables / constructs. The measurement model may 

contain such features as correlated residuals (method effects), simple structure, cross-loadings, 
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equality (or even more complicated) constraints. This stage is very similar to Exploratory Factor 

Analysis with oblique rotation – and it may even be a good idea to start there. 

• I prefer to work on standardized data when developing the measurement model.  This makes it 

possible to look at residual correlations, which are easier to interpret than residual covariances. I 

generally find little use of modification indices, but feel free to look at them. 

• Once you have decided how your measurement model should look like and you are happy with 

the fit, you can start developing the structural part of the model, by imposing your assumed 

causal order and possibly trimming the effects that you deem to be unnecessary. While doing 

this, keep comparing fit statistics and coefficients of interest between models. In developing 

models, I generally prefer arguments about changes in coefficients of interest over arguments 

about fit statistics. 

• If you are sort of happy with the model, re-estimate it with method=mlmv and see whether 

you are still happy (and whether the SE have indeed become smaller). 

• Never publish only the fit statistics – the coefficients are the numbers of substantive interest. 


