5§ Confirmatory
Factor Analysis

CHAPTER

n this chapter, we consider the operationalization of a measuremen

model through confirmatory factor analysis. As will become appareni
applications of confirmatory factor analysis are particularly appropriat
when there is a debate about the dimensionality or factor structure of’
scale or measure. In this chapter, we consider the dimensionality of :
measure of union commitment.

Since the original publication of the Gordon, Philpot, Burt, Thompson
and Spiller (1980) 30-item union commitment scale, there have bee:
numerous factor analytic studies of the scale (e.g., Friedman & Harve3
1986; Fullagar, 1986; Kelloway, Catano, & Southwell, 1992; Klander
mans, 1990) Kelloway and colleagues (1992) proposed a shorter 13
item version of the scale designed to represent three factors: Unio
Loyalty; Willingness to Work for the Union; and Responsibility to th
Union.

In this chapter, we will conduct a confirmatory factor analysis of th
shortened scale based on data drawn from 217 union stewards. E
developing and conducting the analysis, we will follow Bollen am
Long’s (1993) description of structural equation modeling as compnsu'ﬁ
five steps:

1. model specification,
2. identification, -

3. estimation,

4. testing fit, and

§. respecification.
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Figure 5.1,

‘i;jdel Specification

e

e first step in operationalizing the model was to clarify exactly what
ationships the model proposed. Figure 5.1 presents the proposed
sdel. Note that the first factor (Union Loyalty) is measured by seven
ms, the second (Willingness to Work for the Union) by three items,
‘A the third (Responsibility to the Union) by three items. Note also that
ch observed variable is also caused by a second latent variable repre-
nting the residual (or unique factors for factor analysts). Finally, each

| he three factors is allowed to correlate with the other latent variables

, the factors are oblique).

Given our focus on comparing models, it is appropriate to develop

. models to contrast with the proposed three-factor solutions. As
earlier, ideally these rival models will stand in nested sequence
he model of interest to allow for the:use of direct comparisons
the x sifterence test. The best source of such rival specification is the
ature. In the case of the union commitment scale, for example,
dman and Harvey (1986) reanalyzed the data from Gordon and
leagues (1980) and suggested a two-factor solution, with one factor
sentmg attitudes and the other representing behavioral intentions.
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For the current example, the two-factor model is depicted in Figure
5.2. Essentially, one obtains the two-factor model by combining the
Willingness to Work for the Union and Responsibility to the Unior
factors. Although it is not intuitively obvious, the two-factor model is
nested within the three-factor model. That is, by fixing the correlatior
between Willingness and Responsibility to equal 1.0, you obtain the
two-factor model from the original three-factor model. The % differenc
test therefore will have 2 degrees of freedom (because there will be twe
fewer intercorrelations estimated). :

If the literature does not provide a reasonable alternative to the factot
structure you hypothesize, alternative structures may be obtained by
constraining one or more parameters in the original model. In general,
for any model that contains a number of correlated factors, nested
models may be obtained by estimating (a) a model containing orthogo-
nal factors (i.c., constraining all interfactor correlations to equal zero,
see Figure 5.3) and/or (b) a unidimensional model (i.e., constraining all
interfactor correlations to equal 1.0, see Figure 5.4). :

From Pictures to LISREL

The model thought to explain the observed correlations between the
union commitment items implies a set of structural equations. In the
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ISREL environment, you do not have to worry about the exact form
the equations, but you do have to be concerned with the form of the
clevant matrices. The process of translating the models into LISREL
ynalyses is similar for all models, so we will focus on the three-factor
nodel as an example. .

Before beginning the process of translating the figures into LISREL
mmands, it is important to note that LISREL allows you to conc!uct
f‘gjnfirmatory factor analyses on both the exogenous (i.e., using matrices
X, PH, and TD) and endogenous (i.e., using matrices LY, PS, and TE)

Union
Commitment

VAL AL LA
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sides of the full model. The choice of which side of the model to use
largely left to the user. As will become apparent, there are some advantag
to using the exogenous (X) side of the model, but the numerical resu.
should be exactly the same whichever side is used.

Because this is a factor analysis (for convenience only, of the exog
nous variables), there are three matrices to be concerned with: L
(factor loadings), PH (interfactor correlations), and TD (unique factor:
The LX matrix will have three columns (one for each latent variable) a1
14 rows (one for each item), The PH matrix will have three columns a
three rows and will be symmetrical (i.e., the elements above the diagon
will be the same as the elements below the diagonal because it is
correlation matrix). Finally, the TD matrix will be a vector (one row) wi
14 columns (representing the 14 unique factors). The complete specific
tion for the three matrices (indicating which elements are FRee or Flxe,
is given below.

There are 29 parameters to be estimated (13 factor loadings + 1
unique factors + 3 interfactor correlations). With 13 variables, th
implies a number of degrees of freedom for the model equal to

13 x (13 + 1)/2-29 = 62,

Following the matrix presentations, I have enclosed the annotated coc
used to test the model. Note the correspondence between the code an
the matrix forms presented.

LX MATRIX
Kl K2 K3
X1 FR FI FI
X2 FR FI FI
X3 FR FI FI
X4 FR FI FI
X5 FR FI F1
X6 FR FI FI
X7 FR FI FI
X8 FI. FR FI
X9 FI FR FI
X10 FI. FR FI
X11 FI. FI FR
X12 FI. FI FR
X13 FI. FI FR

Confirmatory Factor Analysis

PHI MATRIX

Kl Kz K3
K1 1.00
K2 FR 1.00
K3 FR FR 1.00
TD MATRIX

X1 X2 X3 X4 X5 X6 X7 X8 X9 XI10
FR FR FR FR FR FR FR FR FR FR
X11 X1z Xi3

FR FR FR

ANNOTATED CODE

Scale
Note: The title is optional but recommended.

DA NI =13 NO = 217 MA = CM

I want to analyze the covariance matrix (CM).

ME

3.922 4,336 3.940 3.811 4.198 4.479 4.101
4,083 4.221 4.060 4.171 3.899 3.820

Note: This is the vector of means for each item.

Sb
.937 .856 .991 .921 .851 .714 .917
.878 .837 .987 .846 .976 1.050

KM FU
1.000 .443 .643 .621 .635 .423  .564
.531  ,370 .331 .542 .497 .550
.443 1.000 .531 .421 .480 .432 .504
.351 .283 .288 .476 .323 .371

Note: This is the vector of standard deviations for each item.
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TI Confirmatory Factor Analysis of the Union Commitment

Note: There are 13 input variables (items), with 217 respondents,
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.643 .531 1.000 .510 .634 .414 485

.405 ,368 .359 .448 .343 .426

.621 .421 .510 1.000 .698 .392 .615

.529  .367 .339 .511 .452 .616

.635 .480 .634 .698 1.000 .468 .603

.529 .361 .388 ,551 .426 .553

423 .432 414 .392  .468 1.000 .427

.549  .604 .577 .477 .369 .406

.564 .504 .485 .615 .603 ,427 1.000

.485 314 .372 .532 .441 .634

.531  .351 .405 .529 .529 .549  .455
1.000 .561 .571 .392 .302 .413

.370 .283 .368 .367 .361 .604 .314

.561 1.000 .629 .391 .288 .377

.331  .288 359 .339 .388 .577 .372

.571  .629 1.000 .370 .309 .382

.542  .476 .448 .511 ,551 .477 .532

.392 .391  .370 1.000 .727 .712

497 .323  .343 .452 .426 .369 .441

.302  .288 .309 .727 1.000 .710

.550 .371 .426 .616 .553 .406 .634

.413  .377 .382 .712 .710 1.000

FR LX(7,1)

Note: Here I define the first factor by telling LISREL to freely
mate the loadings of the first seven variables (seven Union Loyalty
ns) on the first factor.

FR LX(8,2) LX(9,2) LX(10,2)

ote: These lines define the second factor by telling LISREL to freely
mate the loadings for the next three variables (three Willingness to

for the Union items) on the second factor (Willingness).

FR LX(11,3) LX(12,3) LX(13,3)

Note: Left as an exercise for the reader. It may help you to know that
Responsibility to the Union scale has three items.

OU ML SC TV

Note: The output command tells LISREL that I want a maximum
hood solution (ML). I also want LISREL to provide the completely
dardized solution for the estimated parameters (SC) and the ¢ values
ificance tests) for the parameters.

Note: This is the full correlation matrix. tional Comments

u will note that I did not have to specify the FIxed elements in the
aatrix. This is because the default form of the matrix is full (NX rows
columns), and all elements are fixed. To specify the loadings I want,
fore, I only have to free the elements I want estimated.

r declaring the PH matrix to be ST, I have declared the matrix to
mmetrical, with 1s in the diagonal and free elements in the
gonals. No further specification is necessary to produce the
ion matrix I want. The ST specification is a convenience pro-
by the authors of LISREL for doing confirmatory factor analysis.
lies only to the PH matrix and can be used only for a factor analysis
¢ exogenous variables.

cause this command sets 1s in the diagonals of the factor covariance
ix, and because the diagonals of PH represent the variances of the
t variables, using the PH = ST specification tells LISREL that latent

MO NX = 13 NK = 3 PH = ST

Note: The first line of the model command defines 13 X variable
and three K variables, thereby specifying a factor analysis model usiny
matrices TD, LX, and PH. “PH = ST” indicates that the interfacto
covariance matrix is the lower part of a symmetric matrix and has 1si
the diagonal; hence, it is a correlation matrix—the off-diagonal element
contain the disattenuated (corrected for unreliability) correlations be
tween the three latent variables (factors). The ST form is a convenienes
provided by the LISREL authors for confirmatory factor analysis
applies only to analyses using the exogenous side of the LISREL mo

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1)
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“variables are in standard score form. In effect, the specification assigns
a metric (i.e., a scale of measurement) to the latent variables. Recall thaj
latent variables are, by definition, not directly measured. Unless the use:
indicates a scale of measurement for the latent variables, LISREL wi
not be able to estimate a solution.

Although the PH = ST specification is a convenience provided fot

_confirmatory factor analyses, there is another way to set the scale of
measurement for latent variables. That is, you can tell LISREL that the
latent variable uses the same scale of measurement as one of the obscrveé
variables. Although this is the method typically used when conducting
confirmatory factor analysis on the endogenous (Y) side of the model%
it works equally well on the exogenous (X) side.

For example, you can set the scale of measurement for an endogeno
latent variable by FIxing an element of the LY matrix to equal 1. For exampl

ollen and Lennox (1991) distinguish between the use of “effect” indica-
rs (those that are caused by latent variables) and “causal” indicators
those that cause latent variables). Although recognition of this distinc-
on may have substantial implications for how organizational researchers
hypotheses about measurement relations, the implementation of
usal” indicator measurement models is not straightforward (MacCal-
im & Browne, 1993) and the Bollen and Lennox (1991) formulation
s not yet seen widespread application in the research literature. In any
nt, reliance on the common factor model as the basis for confirma-
y factor analyses implicitly assumes a one-way causal flow. The
ond overidentifying condition is the imposition of the constraint that
¢ Jeast some factor loadings are 0.

- Bollen (1989) summarizes the issue of model identification in confir-
tory factor analyses by citing three rules for model identification. As
viously discussed, the “t rule” suggests that the number of estimated
ameters be less than the number of nonredundant elements in the
ovariance matrix. Bollen (1989) also indicates that confirmatory factor
nalyses models are identified if (a) there are at least three indicators
served variables) for each latent variable (factor) or (b) there are at
t two indicators for each latent variable and the factors are allowed
b correlate (i.e., an oblique solution). Both the two-indicator and
hree-indicator rules assume that the unique factor loadings (i.e., error
ms) are uncorrelated.

Although the three-indicator rule is perhaps the most commonly
d, the empirical evidence supports the use of two indicators for each
ent variable when the sample size is large. Specifically, in their Monte
tlo study, Anderson and Gerbing (1984) found that with small
nples (e.g., #» < 100), the use of only two indicators for each latent
iable led to both convergence failures and improper solutions for
nfirmatory factor analyses. Using three indicators for each latent
1ablc and sample sizes above 200 almost eliminated both convergence
lures and the occurrence of improper solutions.

VA 1.0 LY(1,1)
FI LY(1,1)

first variable.
TD by default is diagonal (a vector of one row by NX columns) wit
all free elements. Because this is what I want, no further specification i is
necessary. Conceptually, the form of the TD matrix represents t
assumption that error variances (unique factors) are uncorrelated.
though this assumption is universal in the psychological literature on
factor analysis, it is not required by LISREL.

These lines tell LISREL that the first factor is on the same scale as thé

Identification

For confirmatory factor analyses, issues of model identification typicall
are dealt with by default. That is, in most applications of confirmatot
factor analysis, the latent variables or factors are hypothesized to “caus
the observed variables. In such applications, the model is recursive i
that the causal flow is expected to be from the latent variables to tk
observed variables.
Although this formulation of the measurement model is the mo
common, it is important to note that Bollen and Lennox (1991) have
recently pointed out that it is not a necessary formulation. Specificall

following is a sample of the type of output you obtain from LISREL.
output is divided into a number of sections. First, LISREL echoes
model specifications you entered and displays each matrix involved
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in the model in its specified form. Freely estimated parameters are nu
bered consecutively.

The next section of output is the maximum likelihood estimat
provided by LISREL. These are the unstandardized estimates (comp
rable to unstandardized regression weights) and should be interprete
in the light of the scales on which the variables are measured. LISR
then presents the fit indices for the model. The R? values for ea¢
variable are indications of how well the latent variables explain th
variance in the observed variables. The fit indices are then presente
followed by the optional output you have requested. Following is th
annotated output for the three-factor union commitment model pre
viously presented.

Ti Confirmatory Factor Analysis of the Union Commitment Scala
NUMBER OF INPUT VARIABLES 13 :
NUMBER OF Y - VARIABLES 0
NUMBER OF X - VARIABLES 13
NUMBER OF ETA - VARIABLES 0
NUMBER OF KSI - VARIABLES 3
NUMBER OF OBSERVATIONS 217

Note: This is a useful check to make sure LISREL is reading the mo
the way you intended. The commands specify 13 X variables and
variables (factors). There are 217 observations.

Ti Confirmatory Factor Analysis of the Union Commitment Scale
COVARIANCE MATRIX TO BE ANALYZED

VAR 1 VAR 2 VAR 3 VAR & VAR 5

— e ee—— eeeeas e——

VAR 1 0.88

VAR 2 0.36 0.73

VAR 3 0.60 0.45 0.98

VAR 4 0.54 0.33 0.47  0.85

VAR 5 0.51 0.35 0.53 0.55 0.72

VAR 6 0.28 0.26 0.29 0.26 0.28

VAR 7 0.48 0.40 0.44 10,52 0.47
VAR 8 0.44 0.26 0.35 0.43 0.40
VAR 9 0.29 0.20 0.31 0.28 0.26
VAR 10 0.3 0.24 0.35 0.31 0.33
VAR 11 0.43 0.34 0.38 0.40 0.40

Confirmatory Factor Analysis

VAR 12 0.45  0.27 0.33 0.41 0.35
VAR 13 0.54 0.33 0.44 0.60 0.49

COVARIANCE MATRIX TO BE ANALYZED
VAR 7 VAR 8 VAR9 VAR 10 VAR 11

VAR 7 0.84
VAR 8 0.37 0.77
VAR 9 0.24 0.41 0.70
VAR 10 0.34 0.49 0.52 0.97
VAR 11 0.41 0.29 0.28 0.31 0.72
VAR 12 0.39 0.26 0.24 0.30 0.60
VAR 13 0.61 0.38 0.33 0.40 0.63
COVARIANCE MATRIX TO BE ANALYZED

VAR 13
VAR 13 1.10

Ti Confirmatory Factor Analysis of the Union Commitment Scale
PARAMETER SPECIFICATIONS

LAMBDA-X
KSI 1 KSI 2 KSI 3
VAR 1 1 0 0
VAR 2 2 0 0
VAR 3 3 0 0
VAR 4 4 0 0
VAR § 5 0 0
VAR 6 6 0 0
VAR 7 7 0 0
VAR 8 0 8 0
VAR 9 0 9 0
VAR 10 0 10 0
VAR 11 0 0 1
VAR 12 0 0 12
VAR 13 0 0 13
PHI
KSI 1 KSI 2 KSI 3
KSI1 0
KSI 2 14 0
KSI 3 15 16 0

65

0.26
0.30

VAR 12

0.95
0.73
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THETA-DELTA VAR 7 0.68 - - --
VIR1 VAR2 VAR 3 VAR 4 VAR § VAR 6 (0.05)
_— —_— - . . - 12.45
-- 0.69 --
7 18 19 20 21 22 VAR 8 (0.05)
THETA-DELTA 12.68
VAR 7 VAR 8 VAR 9 VAR 10 VAR 11 VAR 12 VAR 9 - - 0.63 --
— — —_— S —_ (0.05)
23 24 2% 26 27 28 0 1(1)-*73; -
THETA-DELTA VAR - (0.06)
VAR 13 11.97
- VAR 11 -- - - 0.73
29 (0.05)
15.23
. ; VAR 12 - - -- 0.80
Note: LISREL tells you what parameters are freely estimated and ‘ (0..06)
numbers them consecutively. This is a useful to check that you have 14.04
specified the model correctly. VAR 13 -- - 0.90
(0.06)
Ti Confirmatory Factor Analysis of the Union Commitment 15.16
Scate PHI
QUTPUT =  Number of Iterations = 8 KsI 1 KSI 2 KSI 3
LISREL ESTIMATES (MAXIMM LIKELIHOOD) _ . .
LAMBDA-X KSI 1 1.00
KSI 1 KSI 2 KSI 3 KSI 2 0.72 1.00
_ —_ —_ (0.05)
VAR 1 0.73 -- .- 15.96
(0.05) KsI 3 0.78 0.56 1.00
_ 13.:; {0.04) {0.06)
(0.05) 21.78 9.42
VAR 3 g?:‘ THETA-DELTA
(0.06) o o VAR 1 VAR 2 VAR 3 VAR 4 VAR 5 VAR 6
11.87 - - " - - -
VAR 4 0.72 -- -- 0.34 0.46 0.47 0.33 0.23 0.32
(0.05) (0.04) (0.05) (0.05) (0.04) (0.03) {0.03)
13.9 8.83 9.82 9.34 8.83 8.30 9.83
VAR 5 0.70 -- .-
(0.05) THETA-DELTA
14.43 VR7 VARS8  VARO VAR10  VAR1l VAR 12
VAR 6 0.43 - - - — - - — —_ —
(g-gg) 0.37 0.29 0.31 0.42 0.19 0.32

(0.04) (0.04) (0.04) (0.06) (0.03) (0.04)
9.17 6.89 7.69 7.57 6.81 7.94
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THETA-DELTA
VAR 13
0.29
(0.04)
6.89

Note: For each estimated parameter, LISREL provides the unstan
dardized maximum likelihood estimate, the standard error of the esti

mate (in brackets), and the ¢ value associated with the estimate (i.c., the
estimate divided by its standard error).

SQUARED MULTIPLE CORRELATIONS FOR X - VARIABLES

VAR 1 VAR 2 VAR 3 VAR 4 VAR § VAR 6
0.61 0.37 0_g; m 6_6—8 E7
SQUARED MULTIPLE CORRELATIONS FOR X - VARIABLES

VAR 7 VAR 8 VAR 9 VAR10 VARI11 VAR12

SQUARED MULTIPLE CORRELATIONS FOR X - VARIABLES

VAR 13

——

(0.74)

Note: The squared multiple correlations for each variable reprcsené

‘the amount of variance explained by the model in each observcéj
variable.

i

GOODNESS OF FIT STATISTICS
CHI-SQUARE WITH 62 DEGREES OF FREEDOM =

G

211.92 (P = 0.0]

ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 149.92 ,%
MINIMM FIT FUNCTION VALUE = 0.98 %ﬁ
POPULATION DISCREPANCY FUNCTION VALUE (FO) = 0.69 f\%
ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.11 »
P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) =  0.00000040
EXPECTED CROSS-VALIDATION INDEX (ECVI) = 1.25
ECVI FOR SATURATED MODEL = 0.84
ECVI FOR INDEPENDENCE MODEL = 8.06

Confirmatory Factor Analysis 69

CHI-SQUARE FOR INDEPENDENCE MODEL WITH 78 DEGREES OF

FREEDOM = 1715.53

INDEPENDENCE AIC = 1741,53

MODEL AIC = 269.92

SATURATED AIC = 182.00

INDEPENDENCE CAIC = 1798.47

MODEL CAIC = 96.93

- SATURATED CAIC = 580.57

ROOT MEAN SQUARE RESIDUAL (RMR) = 0.050
STANDARDIZED PMR = 0.065

GOODNESS OF FIT INDEX (GFI) = 0.87

ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.81
PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.59
NORMED FIT INDEX (NFI) = 0.88

NON-NORMED FIT INDEX (NNFI) = 0.88
PARSIMONY NORMED FIT INDEX (PNFI) = 0.70
COMPARATIVE FIT INDEX (CFI) = 0.91
INCREMENTAL FIT INDEX (IFI) = 0.91

RELATIVE FIT INDEX (RFI) = 0.84

CRITICAL N (CN) = 93.58

_ Note: These are the fit indices described in Chapter 2.

CONFIDENCE LIMITS COULD NOT BE COMPUTED DUE TO TOO SMALL
P-VALUE FOR CHI-SQUARE

Ti Confirmatory Factor Analysis of the Union Commitment Scale
SUMMARY STATISTICS FOR FITTED RESIDUALS

SMALLEST FITTED RESIDUAL = -0.11

MEDIAN FITTED RESIDUAL 0.00

LARGEST FITTED RESIDUAL 0.17

STEMLEAF PLOT

- 11
- 1988766555555
- 0]444444433333333222222222111110000000000000000000

011111122222333344444
015577789

1133

1}67

SUMMARY STATISTICS FOR STANDARDIZED RESIDUALS
SMALLEST STANDARDIZED RESIDUAL = -3.71
MEDIAN STANDARDIZED RESIDUAL = 0.00
LARGEST STANDARDIZED RESIDUAL = 6.10
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STEMLEAF PLOT VAR 5 - 1.38 2,01
- 3732 VAR 6 -- 54.27 0.52
- §|oasaysesesasziroon VAR 7 - - 117 472
- 0]999988766555421000000000000000 VAR 8 14.95 -- 0.28
2000366885 VAR 9 sz - 0.08
2{45679 VAR 10 4.40 -- 0.13
2 %gg VAR 11 1.06 0.75 - -
515 VAR 12 13.77 6.52 --
st VAR 13 6.51 2.26 - -
LARGEST NEGATIVE STANDARDIZED RESIDUALS EXPECTED CHANGE FOR LAMBDA-X
RESIDUAL FOR VAR 6 AND VAR 4 -2.76 eI 1 KsI 2 KSI 3
RESIDUAL FOR VAR 10 AND VAR1 -2,72 - —— —
RESIDUAL FOR VAR 12 AND VAR 3 -3.19 VAR 1 - -0.06 0.06
RESIDUAL FOR VAR 12 AND VAR5 -3.28 VAR 2 .- -0.08 -0.02
RESIDUAL FOR VAR 13 AND VAR 11 -3.71 VAR 3 - -0.07 -0.25
LARGEST POSITIVE STANDARDIZED RESIDUALS VAR 4 - = -0.05 0.06
RESIDUAL FOR VAR 3 AND VAR 1  3.19 VAR 5 - -0.08 -0.11
RESIUAL FOR ~ VAR3AND  VAR2 2.72 VAR 6 - 0.54 0.06
RESIDUAL FOR VAR 5 AND VAR 4 2.88 VAR 7 -- -0.09 0.19
RESIDUAL FOR VAR 8 AND VAR 6  4.68 VAR 8 0.38 -- 0.04
RESIDUAL FOR VAR 9 AND VAR6  6.10 VAR 9 -0.16 -- -0.01
RESIDUAL FOR VAR 10 AND VARG  5.47 VAR 10 -0.23 - -0.03
RESIDUAL FOR VAR 10 AND VAR9  3.90 VAR 11 0.09 0.05 .-
RESIDUAL FOR VAR 13 AND VAR 4 3,10 VAR 12 -0.35 -0.17 --
RESIDUAL FOR VAR 13 AND  VAR7  4.24 ViR 13 0.26 0.10 .-
3 STANDARDIZED EXPECTED CHANGE FOR LAMBDA-X
Note: The foregoing is diagnostic information provided by LISREL KSI 1 KSI 2 KSI 3
The two residual plots should look approximately normal. The listin — — —_
of standardized residuals may provide clues to sources of ill-fittin VAR 1 -- -0.06 0.06
models. In general, large standardized residuals indicate a lack of fi VAR 2 -- -0.08 -0.02
LISREL prints any residual > 2.00. VAR 3 -- -0.07 -0.25
VAR 4 - - -0.05 0.06
Ti Confirmatory Factor Analysis of the Union Conmitment Scale VAR 5 -- -0.08 -0.11
MODIFICATION INDICES AND EXPECTED CHANGE VAR 6 - - 0.54 0.06
MODIFICATION INDICES FOR LAMBDA-X VAR 7 -- -0.09 0.19
KSI 1 KSI 2 KSY 3 VAR 8 0.38 - - 0.04
- — —_ VAR 9 -0.16 -- -0.01
VAR 1 -- 0.47 0.49 VAR 10 -0.23 -- -0.03
VAR 2 -- 0.72 0.04 VAR 11 0.09 0.05 --
VAR 3 - 0.54 6.49 VAR 12 -0.35 -0.17 - -
VAR & -- 0.42 0.52

VAR 13 0.26 0.10 - -
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COMPLETELY STANDARDIZED EXPECTED CHANGE FOR LAMBDA-X

VAR 1
VAR 2
VAR 3
VAR 4
VAR §
VAR 6
VAR 7
VAR 8
VAR 9
VAR 10
VAR 11
VAR 12
VAR 13

VAR 1
VAR 2
VAR 3
VAR 4
VAR 5
VAR 6
VAR 7
VAR 8
VAR 9
VAR 10
VAR 11
VAR 12
VAR 13

VAR 7
VAR 8

KSI 1 KsI 2
-- ~0.06
-- -0.09
-- -0.07
-- -0.06
-~ - -0.10
-~ 0.76
-- -0.10
0.44 --
~0.20 --
-0.23 - -
0.10 0.06
-0.36 -0.17
0.25 0.10
MODIFICATION INDICES FOR THETA-DELTA
VAR 1 VAR 2 VAR 3
1.30 - -
10.21 7.37 --
0.14 3.54 4.64
0.30 0.69 3.58
2.95 2.47 0.40
0.68 2.4 3.52
5.47 0.27 2.28
0.57 0.07 0.33
6.27 0.01 0.05
0.09 8.10 0.06
2.94 0.77 1.24
0.38 5.11 2.38
MODIFICATION INDICES FOR THETA-DELTA
VAR 7 VAR 8 VAR 9
0.03 --
3.40 4.46 -

VAR 9

KSI 3

0.07
-0.02
-0.26

0.07
-0.13

0.08

0.21

0.04
-0.02
-0.03

VAR 4

8.30
7.60
1.81
4,90
0:83
4.73
4.69
0.27
10.73

VAR 10

VAR §

1.39
0.28
2.01
4.24
0.58
0.28
2.77
0.08

VAR 11

VAR

VAR 10
VAR 11
VAR 12
VAR 13

Confirmatory Factor Analysis

0.21 .

0.86
1.38
15.34

3.33
0.59
1.48
0.00

15.20
1.61
0.11
0.00

MODIFICATION INDICES FOR THETA-DELTA

VAR 13

EXPECTED CHANGE FOR THETA-DELTA

VAR 1
VAR 2
VAR 3
VAR 4
VAR §
VAR 6
VAR 7
VAR 8
VAR 9
VAR 10
VAR 11
VAR 12
VAR 13

EXPECTED CHANGE FOR THETA-DELTA

VAR 7
VAR 8
VAR 9
VAR 10
VAR 11
VAR 12
VAR 13

VAR 1 VAR 2
-0.03 --
0.10 0.09
0.0t -0.06
-0.01 -0.02
-0.04 0.04
-0.02 0.05
0.06 -0.02
-0.02 -0.01
~0.08 0.00
-0.01 0.07
0.05 -0.03
-0.02 -0.07
VAR 7 VAR 8
0.01 --
-0.05 -0.09
0.01 -0.09
-0.02 -0.02
-0.03 -0.03
0.11 0.00

VAR 3

-0.07
0.05
~0.02
-0.06
-0.05
0.02
0.01
0.01
-0.03
~0.05

VAR 9

0.17
0.03
-0.01
0.00

0.00
0.53
0.08

VAR 4

0.07
-0.07
0.04
0.06
-0.02
-0.07
-0.05
-0.01
0.09

VAR 10

0.00
0.02
0.01

6.51
13.74

VAR §

-0.03
-0.01

0.03
-0.05
-0.02

0.01
-0.04
-0.01

VAR 11

0.09
-0.15

73

1.05

VAR 6

-0.02
0.00
0.11
0.11
0.04
0.00

-0.04

VAR 12

0.04
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EXPECTED CHANGE FOR THETA-DELTA
VAR 13

VAR 13 --

e expected change for the parameter is the expected value of the
ameter if it were freed. The standardized and completed sta}nd-
lized expected changes are the expected values in the standardized
d completely standardized solution if the parameter were freed.

COMPLETELY STANDARDIZED EXPECTED CHANGE FOR THETA-DELTA

VAR 1 VAR 2 VAR3  VARR4  VARS Ti Confirmatory Factor Analysis of the Union Commitment
I i I - - Scale
1= STANDARDIZED SOLUTION
VARZ — -0.04 - - LAMBDA-X
VW3 ol ol --
VR4 001 -0.07 0.7 - 61 1 KSI 2 KSI 3
VAR5 0.0z -0.3  0.06  0.09  -- _ — —
VARE  -0.07  0.07  -0.03  -0.11  -0.04 R 1 0.73 .- --
VAR7 003 0.06 007  0.05  -0.02 VAR 2 0.52 .- -
VARS8  0.08  -0.02  -0.05 0.7  0.04 VAR 3 0.71 -- --
VAR9  0.03 0.0l 002  -0.03  -0.07 VAR 4 0.72 - --
VAR10  -0.09  0.00  0.001  -0.07  -0.02 VAR § 0.70 - --
VAR -0.00 000 001  -0.06  0.01 VAR 6 0.43 .- --
VAR12  0.05  -0.03  -0.04  -0.02  -0.05 VR 7 0.6 .- .-
VR  -0.02  -0.08 =006  0.09  -0.01 VR 8 .. 0.6 -
COMPLETELY STANDARDIZED EXPECTED CHANGE FOR THETA-DELTA VAR 9 - - 0.63 -
VAR7 VARS8 VAR9  VARI0 VARI1l VAR VAR 10 -- 0.75 T
—_— — —_ —_ —_— VAR 11 -- -- 0.73
VW7 - VAR 12 -- -- 0.80
VARS8  0.01 -- VAR 13 -- -- 0.90
VRY  -0.07  -0.02 - - PHI
VAR10 0,02 -0.10 021 -~
VAR11  -0.03  -0.02  0.08  0.00  -- K1 1 KSI 2 KSI 3
VIR1Z 0.4 -0.08 001  0.02 0.0 — -_— —
VAR13 002 000 000 001  -0.16 KSI 1 1.00
kst 2 0.72 1.00
COMPLETELY STANDARDIZED EXPECTED CHANGE FOR THETA-DELTA
VAR 13 KsI 3 0.78 0.56 1.00

VAR 13

———

MAXIMUM MODIFICATION INDEX IS

Note: For each fixed parameter, LISREL reports the modificati

54.27 FOR ELEMENT (6, 2) OF LAMBDA-X

index and the expected amount of change. The modification index

the amount by which the model % will decrease if the parameter is free

Note: The standardized solution is based on standardized latent
ables but unstandardized observed variables. As a result, the parame-
rs are not constrained to have an absolute value less than 1.

Ti Confirmatory Factor Analysis of the Union Conmitment Scale
COMPLETELY STANDARDIZED SOLUTION
LAMBDA-X
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KSI 1 KSI 2 KSI 3 "ABLE 5.1 Fit Indices for the Models
VAR 1 0.78 - - - xz df GFI AGFI RMSEA NFI CFI PNFI PGFI
VAR 2 0.61 -- - - ’
VAR 3 0.72 -- -- 21192 62 .87 .81 .11 .88 91 .70 .59
VAR 4 0.78 - --
VAR § 0.82 -- -- orthogonal 449.50 65 .78 .70 .17 .74 .77 .61 .56
VAR 6 0.61 - - R 2-factor
VAR 7 0.75 - -- oblique 359.39 64 .77 67 15 79 .82 65 .54
VAR 8 -- 0.79 -- 1-factor 414.10 65 .74 64 16 76 79 .63 .64
VAR 9 -- 0.75 -- '
VAR 10 -- 0.75 - -
z::: :; .- - g:gg ssessment of Fit
VAR 13 - - - - 0.86
ven the models described earlier, assessing the fit of the three-factor
PHI odel is based on (a) whether the model fits better than rival specifications
KSI 1 K1 2 KSI 3 d (b) whether the model provides a good absolute fit to the data. The fit
KSI 1 ;—0;' — - dices for all the rflo.dcl's described earlief are prcsepted in Table .5 1
kST 2 0‘72 Loo As shown, the fit md.uies all converge in suggesting the superiority
kST 3 0.78 0'55 - the model hypothesizing three oblique factors. Qompanson with
) ' . e other models shows that the three-factor (oblique) model pro-
THETA-DELTA des a better fit to the data than does a model hypothesizing three
VAR 1 VAR 2 VAR 3 VAR4 VAR5 VARG thogonal factors [ difterence(3) = 237.58, p < .01], two oblique factors
—_ _— —_— — —_— — % sitterence(2) = 147.47, p < .01], or one factor [xzdiffegenc¢(3) = 202.18,
0.39 0.63 0.48 0.39 0.32 0.63 < .01]. Moreover, inspection of the indices of parsimonious fit (i.e.,
THETA-DELTA e PNFI and PGFI) suggest that the three-factor model provides the

st parsimonious fit to the data.
As is typical in confirmatory factor analysis (Kelloway, 1995, 1996),
ough the three-factor model provides a better fit to the data than do

VAR 7 VAR 8 VAR 9 VAR 10 VAR 11 VAR12

0.44 0. .
* o8 0.4 0-26 0.3 yal specifications, the model itself does not provide a very good fit to

THETA-DELTA ¢ data. Although inspection of the preceding printout suggests that all
VAR 13 e estimated parameters in the hypothesized three-factor model are
; snificant, the % associated with the model is also significant. With the
' ption of the CFI (CFI = .91), all the fit indices are outside the

nds that indicate a good fit to the data (e.g., GFI, AGFI, NFI < .90;
MISEA >.10). Thus, the most that can be concluded from these results
that the hypothesized three-factor model provides a better fit than do
ausible rival specifications.

Note: The completely standardized solution is based on standardiz
latent and observed variables, These are the values that typically
reported in a results section.
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Model Modification

Confirmatory Factor Analysis 79

an examination of the obtained solution includir.lgl the Conditiorf 9 tests
(James et al., 1982) referred to earlier, the coefficient of determlflatlfm,
the R? values associated with each equation in the model, and examination
of directfindirect effects (when appropriate);

nested model comparisons; and ‘ ~
model modifications and alternate models—When the model i§ modified
on the basis of empirical results, a minimum standard of reporting would
include the change in overall fit associated with modlflcatxo_n. as yvell as
the change in specific parameters as a result of model modification. A.s
noted earlier, such modifications should be treated as exploratory until
cross-validated on an independent sample.

Faced with results like these, researchers may well be tempted to enga,
in a post hoc specification search to improve the fit of the model. Giv
that all the estimated parameters are significant, theory trimming (i.
deleting nonsignificant paths) does not seem to be a viable opti
Theory building (i.e., adding parameters based on the empirical resul
remains an option.

Inspection of the LISREL-produced modification indices sugge
several likely additional parameters (i.e., modification indices grea
than 5.0). Most strikingly, the largest modification index (54.27) su
gests freeing the path from the second factor to the sixth item. Althou
the modification index suggests that a substantial improvement in:
could be obtained from making this modification, the reader is remind
of the dangers associated with post hoc model modifications. In t
case, | would not typically make the change because (a) of the dange
of empirically generated modifications, (b) there is no theoretical just
fication for the change, and (c) the item is clearly not designed to assesg
Willingness to Work for the Union.

1 model tests were based on the covariance matrix anfl used
imum likelihood estimation as implemented in LISREL VIII (Joreskog
srbom, 1992). .

it indic’es for the four models are presented in Table 5.1. As shown,
ndices converge in suggesting the superiority of the model hyp9the-
g three oblique factors. In particular, the three-factor (obh.qyc)
el provides a better fit to the data than does a model hypothesx'zmg
ree orthogonal factors [ difference(3) = 237.58, p < .01], two oblique
Sample Results Section

LE 5.2 Standardized Parameter Estimates for the Three-Factor Model

We conclude this example of confirmatory factor analysis with tl

presentation of a sample results section. A useful guide to reporting t Union Willingness to Responsibility 5
results of structural equation modeling was provided by Raykow, Tome Loyalty Work to the Union R
and Nesselroade (1991). As a minimum set of reporting standards, the 0.78 0.61
suggest that all reports of structural equation modeling analyses incl 0' 61 0.37
: » 0.72 0.52
1. a graphic presentation of the structural equation model following col 0.78 0.61
ventional symbols (see, for example, Bentler, 1990; Joreskog & Sorb 0' 82 0.68
1992); 0' 61 0.37
2. parameters for the structural equation run, including the type of matri 0:75 0.56
analyzed, the treatment of missing values and outliers, the numbe 0.79 0.62
groups to be analyzed (if appropriate), and the method of param 0.75 0.56
estimation; 0.75 0.57
3. anassessment of model fit, such as Condition 10 tests ( James et al., 198; 0.86 0.74
As previously noted, researchers are well advised to report multipl 0.82 0.66
indices and should report indices that reflect different conception 0.86 0.74
model fit; .
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TABLE 5.3 Interfactor Correlations

1 2 3
1. Union Loyalty 1.00 I 6 Obseﬂ/ed Wrzab le
2. Willingness to Work for the Union 0.72 1.00 HAPTER

Path Analysis

3. Responsibility to the Union 0.78 0.56 1.00 »
-—

NOTE: All parameters p < .01. §

factors [ difference(2) = 147.47, p < .011, or one factor [} difterence(3)
202.18, p < .01]. Moreover, inspection of the indices of parsimoni
fit (i.e., the PNFI and PGFI) suggests that the three-factor mo
provides the most parsimonious fit to the data,

Standardized parameter estimates for the model are presented
Table 5.2. As shown, model parameters were all significant (p < .
and explained substantial amounts of item variance (R* ranged fron
0.37 to 0.74). As shown in Table 5.3, the three factors were significan
correlated (r = .56, .72, and .78).

Yath analysis with observed variables is the “oldest” variety of struc-
[ tural equation modeling. In contrast to the assessment of a measure-
nt model as presented in the previous chapter, the goal of path
alysis is to test a “structural” model, that is, a model comprising
eoretically based statements of relationships among constructs.

‘For an example of path analysis, I will use a scaled-down version of
e model presented by Kelloway and Barling (1993). The intent of the
search was to predict union members’ involvement in union activities
tending meetings, serving as officers, reading union literature, voting
elections). The theoretical development of the model relied heavily
ishbein and Ajzen’s (1975) theory of reasoned action. In brief, the
ory of reasoned action suggests that the best predictor of actual
havior is an individual’s intent to engage in the behavior. In turn,
havioral intentions are predicted by one’s attitudes toward the activity
d subjective norms. One’s beliefs about the activity predict attitudes

ward the behavior.

lodel Specification

ur study, we had measures of participation in union activities (the
vior), willingness to participate in the union (which we treated as
havioral intention), union loyalty (attitudes toward the union), and
ective norms (perceptions of family, friends, and important people
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