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(or at least one plausible) theory might be. In particular, there i
information in the data you have collected that you may not be using tc
its fullest advantage. :

A second approach to an ill-fitting model is to use the availabl
information to try to generate a more appropriate model. This is th:
“art” of model modification—changing the original model to fit thi
data. Although model modification is fraught with perils, I do no
believe that anyone has ever “gotten it right” on the first attempt a
model fitting. Thus, the art of model fitting is to understand the danger
and try to account for them when you alter your model based o1
empirical observations.

The principal danger in post hoc model modification is that thi
procedure is exploratory and involves considerable capitalization o1
chance. Thus, you might add a path to a model to make it fit the dat:
only to find that you have capitalized on chance variation within you
sample and the results will never be replicated in another sample. Ther
are at least two strategies for minimizing this problem,

First, try to make model modifications that have some semblance o
theoretical consistency (bearing in mind Steiger’s comments about ou
ability to rationalize). If there are 20 studies suggesting that job satisfac
tion and job performance are unrelated, do not hypothesize a patl
between satisfaction and performance just to make your model fit
Second, as with any scientific endeavor, models are worthwhile onl:

when they can be replicated in another sample. Post hoc modification |

to a model should always be (a) identified as such and (b) replicated i
another sample.?

Notes

1. It also helps to remember that in path diagrams, the hypothesized causal “flow
is traditionally from left to right {or top to bottom); that is, the independent (exogenous
variables or predictors are on the left (top), and the dependent (endogenous) variable
or criteria are on the right (bottom).

2. Note that the use of a holdout sample is often recommended for this purpose. Se
aside 25% of the original sample, then test and modify the model on the remaining 75%
When you have a model that fits the data on the original 759%, test the model on th
remaining 259, Although this procedure does not always result in replicated finding:
it can help identify which paths are robust and which are not.

3 Assessing
Model Fit

HAPTER

™Yerhaps more has been written about the assessment of model it than

any other aspect of structural equation modeling. Indeed, many
earchers are attracted to structural equation modeling techniques
ause of the availability of global measures of model fit (Brannick,
95). In practice, such measures often are used as an omnibus test of
odel whereby one first assesses global fit before proceeding to a
deration of the individual parameters composing the model
skog, 1993). A variety of fit indices are currently available to
tchers wishing to assess the fit of their models, and it is instructive
nsider exactly what we mean when we claim that a model “fits”

least two traditions in the assessment of model fit are apparent
aka, 1993): the assessment of the absolute fit of the model and the
sment of the comparative fit of the model. The assessment of the
parative fit of the model may be further subdivided into the assess-
t of comparative fit and parsimonious fit. The assessment of absolute
concerned with the ability of the model to reproduce the actual
riance matrix. The assessment of comparative fit is concerned with
paring two or more competing models to assess which provides the
r fit to the data.

he assessment of parsimonious fit is based on the recognition that
can always obtain a better fitting model by estimating more parame-
At the extreme, one can always obtain a perfect fit to the data by
ting the just-identified model containing all possible parameters.)
the assessment of parsimonious fit is based on the idea of a
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“cost-benefit” trade-off and asks: Is the cost (loss of a degree of freedo;

worth the additional benefit (increased fit) of estimating more paran

ters? Although measures of comparative and absolute fit will alw:
favor more complex models, measures of parsimonious fit provide
“fairer” basis for comparison by adjusting for the known effects
estimating more parameters.

In the remainder of this chapter, I present the most commonly us
indices for assessing absolute, comparative, and parsimonious fit. |
necessity, the presentation is based on the formulae for calculating the
indices; however, it should be remembered that structural equati
modeling programs such as LISREL do the actual calculations for yc
The researcher’s task, therefore, is to understand what the fit indices 2
measuring and how they should be interpreted. The chapter conclud
with some recommendations on assessing the fit of models.

Absolute Fit

Tests of absolute fit are concerned with the ability to reproduce t
correlation/covariance matrix. As shown in the previous chapter, pe
haps the most straightforward test of this ability is to work backwarc
that is, from the derived parameter estimates, calculate the impli
covariance matrix and compare it, item by item, with the observ:
matrix. There are at least two major stumbling blocks to this procedu

First, the computations are laborious when models are even mode
ately complex. Second, there are no hard and fast standards of ha
“close” the implied and observed covariance matrices must be to clai
that the model fits the data. For example, if the actual correlatic
between two variables is 0.45 and the correlation implied by the mod
is 0.43, does the model fit the data or not?

Early in the history of structural equation modeling, researche
recognized that for some methods of estimation a single test statist
(distributed as x?) was available to test the null hypothesis that

z = X(©)

where X is the population covariance matrix and (@) is the covarian: :

matrix 1mphed by the model (Bollen & Long, 1993). The developme:
of the % test statistic for structural equation models proceeds direct
from early accounts of path analysis in which the attempt was to speci
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model that reproduced the original covariance matrix (e.g., Blalock,
64). In the obverse of traditional hypothesis testing, a nonsignificant
implies that there is no significant discrepancy between the covariance
atrix implied by the model and the population covariance matrix.
ence, a nonsignificant % indicates that the model “fits” the data in that
e model can reproduce the population covariance matrix.

The test is distributed with degrees of freedom equal to

1/2(g)(g + 1) -k

the number of variables in the model and

where g =
k = the number of estimated parameters.

r example, the Fishbein and Ajzen (1975) model introduced in Chapter
and repeated in Figure 3.1 is based on five variables and incorporates

1. Behavioral intentions predict behavior.

. Attitudes predict behavioral intentions.

. Subjective norms predict behavioral intentions.
. Beliefs predict attitudes.

e model therefore has
df = 1/2(5)(6) - 4
df = 1/2(30) - 4

r
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df =15-4
df = 11,

Although the test is quite simple (indeed, LISREL calculates it fo
you), there are some problems with the x” test in addition to the logica
problem of being required to accept the null hypothesis. Fitst, th
approximation to the y” distribution occurs only for large samples (e.g.
N 2 200). Second, just at the point where the %* distribution becomes :
tenable assumption, the test has a great deal of power. Recall that th
test is calculated as N — 1 x (the minimum of the fitting function)
therefore, as N increases, the value of %> must also increase. Thus, for :
minimum fitting function of .5, the resulting %* value would be 99.5 fo
N =200, 149.5 for N = 300, and so on. This makes it highly unlikel:
that you will be able to obtain a nonsignificant test statistic with larg;
sample sizes.

Although not typically presented as fit indices, the LISREL outpu
also includes some indications of model fit, including the following:

1. the noncentrality parameter (estimated as % - df and used in the calcu
lation of some fit indices),

. the 90% confidence interval for the noncentrality parameter,

. the minimum of the fitting function,

. the discrepancy function (used in calculating other fit indices), and
. the 90% confidence interval for the discrepancy function.

“»r W N

This output is presented largely for the information of the researcher
and the values presented typically have no straightforward interpreta
tion. As noted above, however, much of this information is used in the
calculation of other fit indices, as explained below.

Given the known problems of the x* test as an assessment of mode
fit, numerous alternate fit indices have been proposed. Gerbing anc
Anderson (1992, p. 134) describe the ideal properties of such indices to

1. indicate degree of fit along a continuum bounded by values such as 0 anc
1, where 0 represents a lack of fit and 1 reflects perfect fit.

2. be independent of sample size. . . . and

3. have known distributional characteristics to assist interpretation an
allow the construction of a confidence interval.
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With the possible exception of the root mean squared error of
pproximation (Steiger, 1990; see below), thus far none of the fit
ndices commonly reported in the literature satisfy all three of these
riteria; the requirement for known distributional characteristics is
sarticularly lacking, The current version of LISREL (LISREL VIII) reports
8 such indices of model fit, only four of which address the question of
bsolute fit. _

The simplest fit index provided by LISREL is root mean squared
esidual (RMR). This is the square root of the mean of the squared
iscrepancies between the implied and observed covariance matrices.
The lower bound of the index is 0, and low values are taken to indicate
;00d fit. The index, however, is sensitive to the scale of measurement
the model variables. As a result, it is difficult to determine what a
“low” value actually is. LISREL therefore also now provides the stand-
dized RMR, which has a lower bound of 0 and an upper bound of 1.
Generally for this index, values less than 0.05 are interpreted as indicat-
g a good fit to the data. _
LISREL also reports the root mean squared error of approximation
'RMSEA) developed by Steiger (1990). Similar to the RMR, the RMSEA
based on the analysis of residuals, with smaller values indicating a
tter fit to the data. Steiger (1990) suggests that values below 0.10
dicate a good fit to the data, and values below 0.05 a very good fit to
e data. Values below 0.01 indicate an outstanding fit to the data,
hough Steiger (1990) notes that these values rarely are obtained.
Unlike all other fit indices discussed in this chapter, the RMSEA has
¢ important advantage of going beyond point estimates to the provi-
n of 90% confidence intervals for the point estimate. Moreover,
SREL also provides a test of the significance of the RMSEA by testing
hether the value obtained is significantly different from 0.05 (the value
Steiger suggests indicates a very good fit to the data). Perhaps
use of its recent inclusion in the LISREL program, the RMSEA is
¢ frequently reported in the literature; however, the advantages of
fidence intervals and formal hypothesis testing available with this
x will likely increase its use as a measure of model fit.

he goodness-of-fit index (GFI) is based on a ratio of the sum of the
ared discrepancies to the observed variances (for generalized least
ares, the maximum likelihood version is somewhat more compli-
d). The GFI ranges from 0 to 1, with values exceeding 0.9 indicating
ood fit to the data. It should be noted that this guideline is based on
rience. Like many of the fit indices that will be presented, the GFI
no known sampling distribution. As a result, “rules” about when an
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index indicates a good fit to the data are highly arbitrary and should b
treated with caution.

Finally, the adjusted goodness-of-fit index (AGFI) adjusts the GFI fc
degrees of freedom in the model. The AGFI also ranges from 0 to 1
with values above 0.9 indicating a good fit to the data. A discrepanc
between the GFI and AGFI typically indicates the inclusion of trivi
(i.e., small) and often nonsignificant parameters,

Early in the discussion of fit indices, researchers proposed assessin
the fit of the model by taking the ratio of the x> and its degrees ¢
freedom. Unfortunately, conflicting standards of interpretation for thi
index abound (Medsker et al., 1994). For example, %*/df ratios of les
than 5 have been interpreted as indicating a good fit to the data as hav
ratios between 2 and 5, with ratios less than 2 indicating overfitting
Interpretative standards for the x*/df ratio have very little justificatio
other than modelers’ experience, and as a result, use of the index appea
to be unwise and in decline (Kelloway, 1996).

Researchers also have reported the coefficient of determination fc
the model as an index of overall fit. Structural equation modelin
programs typically report R? values for each endogenous variable as we
as an overall coefficient of determination for the model. Althoug
researchers have interpreted these indices as measures of model fit, the
clearly do not address the question of whether the model can reproduc
the covariance matrix. Rather, the model coefficient of determinatio
and the R? values for individual endogenous variables are measures ¢
variance accounted for, rather than measures of model fit (Medske
etal., 1994). It is quite possible to have a well-fitting model that explair
only a modest amount of variance in the endogenous variables.

With the exception of R* values, the indices discussed thus far asses
whether or not the model as a whole provides an adequate fit to th
data. More detailed information can be acquired from tests of specifi
parameters composing the model. James and colleagues (1982) describ
two types of statistical tests used in structural equation modeling
Condition 9-and Condition 10 tests. A Condition 10 test assesses th
overidentifying restrictions placed on the model. The most commo
example of a Condition 10 test is the % likelihood test for goodness ¢
fit. Using the term “test” loosely to include fit indices with unknow
distributions, the fit indices discussed above would also qualify :
Condition 10 tests.

In contrast, Condition 9 tests are tests of the specific paramete;
composing the model. Programs such as LISREL commonly report bot
the parameter and the standard error of estimate for that parameter. Th
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of the parameter to its standard error is also reported as a ¢ test.
ractice, however, and given the large sample sizes involved in
-tural equation modeling, these ¢ values are interpreted using the
cal values for the Z test. That is, values above 1.96 are significant at
p < .05 level. A Condition 9 test, therefore, assesses whether
meters predicted to be nonzero in the structural equation model are
ct significantly different from zero.
gain, it is important to note that consideration of the individual
ameters composing the model is important for assessing the accuracy
e model. The parameter tests are not, in and of themselves, tests of
el fit. Two likely results in testing structural equation models are
(a) a proposed model fits the data even though some parameters
nonsignificant and/or (b) a proposed model fits the data but some
e specified parameters are significant and opposite in direction to
“predicted. In either case, the researcher’s theory is disconfirmed
though the model may provide a good absolute fit to the data. The
f the model has nothing to say about the validity of the individual
lictions composing the model. One must move beyond the assess-
t of global fit to truly evaluate the results of structural equation
eling (Joreskog, 1993).

mparative Fit

aps because of the problems inherent in assessing the absolute fit of
odel to the data, researchers increasingly have turned to the assess-
t of comparative fit. The question of comparative fit deals with
ther the model under consideration is better than some competing
el. For example, many of the indices discussed below are based on
ing a model as a “baseline” and comparing the fit of theoretically
d models to the baseline model. i
n.some sense, all tests of model fit are based on a comparison of
lels. The tests discussed previously implicitly compare the theoreti-
| model against the just-identified model. Recall that the just-identified
1 consists of all possible recursive paths between the variables. As
It, the model has 0 degrees of freedom (because the number of
ated paths is the same as the number of elements in the covariance
rix) and always provides a perfect fit to the data.

dices of comparative fit are based on the opposite strategy. Rather
1 comparing against a model that provides a perfect fit to the data,
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indices of comparative fit typically choose as the baseline a model tk
is known a priori to provide a poor fit to the data. The most comm
baseline model is the “null” or “independence” model (the two ters
are used interchangeably; LISREL printouts refer to the independen
model, but much of the literature makes reference to the null mode
The null model is a model that specifies no relationships between t
variables composing the model. That is, if one were to draw the pa
model for the null model, it would have no paths connecting t
variables (see Figure 3.2).

For example, Bentler and Bonett (1980) have suggested a normed .

index (NFI), defined as

(Xzindep - szodel)/xzindep

The NFI ranges from 0 to 1, with values exceeding 0.9 indicating a go
fit.! As Bentler and Bonett (1980) point out, the NFI indicates t
percentage improvement in fit over the baseline independence mod
Thus, an NFI of 0.90 means that the model is 90% better fitting th

the null model. Although the NFI is widely used, it may underestim: -

the fit of the model in small samples.

The nonnormed fit index (NNFI) uses a similar logic but adjusts t
normed fit index for the number of degrees of freedom in the mod
The NNFI is given by

(xzindep - dfindep /df model szodel)/ (xzindep - df model)

Although this correction reduces the problem of underestimating fit i

introduces a new complication in that it may result in numbers outs
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the O to 1 range. That is, the NNFI results in numbers with a lower
und of 0 but an upper bound greater than 1. Higher values of the
Fl indicate a better fitting model, and it is common to apply the 0.90
le as indicating a good fit to the data.

Bollen’s (1989) incremental fit index (IFI) reintroduces the scaling
ctor, so that IFI values range between 0 and 1, with higher values
indicating a better fit to the data. The IFI is given by

(Xzindep - szodcl)/ (Xzindcp - df ‘model)

Bentler (1990) proposed a comparative fit index (CFI) based on the
ncentral * distribution. The CFI also ranges between 0 and 1, with
lues exceeding 0.90 indicating a good fit to the data. The CFI is based
the noncentrality parameter, which can be estimated as x* — df. Thus,
e CFl is given by

1- [(xzmodel - df ‘model)/ (xzindep - dfindcp)]

‘Marsh and colleagues (1988) proposed a relative fit index (RFI)
fined as

M DD e P

(x izndep -% tznodel) - [dfindep - (df model/N)]
X izndep - (df indep/ 1)

in, the RFI ranges between 0 and 1, with values approaching unity
cating a good fit to the data. The use of 0.90 as an indicator of a
-fitting model is also appropriate with this index.

inally, Cudeck and Browne (1983) suggested the use of the cross-
dation index as a measure of comparative fit. Cross-validation of
dels is well established in other areas of statistics (e.g., regression
yses; Browne & Cudeck, 1993; Cudeck & Browne, 1983). Tradition-
_cross-validation required two samples: a calibration sample and a
tion sample. The procedure relied on fitting a model to the calibration
e and then evaluating the discrepancy between the covariance
x implied by the model to the covariance matrix of the validation
ple. If the discrepancy was small, then the model was judged to fit
ta in that it cross-validated to other samples.

¢ obvious practical problem with this strategy is the requirement
o samples. Browne and Cudeck (1989) suggested a solution to the
em by estimating the expected value of the cross-validation index
only data from a single sample. Although the mathematics of the
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expected value of the cross-validation index (ECVI) will not be pre-
sented here (the reader is referred to the source material cited above),
the ECVI is thought to estimate the expected discrepancy (i.e., differ-
ence between the implied and actual covariance matrices) over all
possible calibration samples. The ECVI has a lower bound of zero but
no upper bound. Smaller values indicate better-fitting models. In addi-
tion to the point estimate of the ECVI, LISREL provides both the
confidence intervals for the estimate and the ECVI values for the
independence (null) and saturated (just-identified) models.

measures of parsimonious fit that consider both the fit of the model and
e number of estimated parameters. AIC is defined as

x model — de ‘model

d CAIC is defined as
xzmodel - (ln N+ l)df model

where N is the number of observations. For both indices, smaller values
ndicate a more parsimonious model. Neither index, however, is scaled
range between 0 and 1, and there are no conventions or guidelines
indicate what “small” means. Like the PNFI and PGFI, interpretation
the AIC and CAIC is based on comparing competing models and
oosing the model that shows the most parsimony. McDonald and
arsh (1990) note that following this strategy using the AIC might result
overly complex models (i.e., although the AIC adjusts for parsimony,
the adjustment is not sufficient to overcome a bias in favor of more
mplex models).

Parsimonious Fit

Parsimonious fit indices are concerned primarily with the cost-benefit
trade-off of fit and degrees of freedom. It is not surprising that several
of the indices can be calculated by adjusting other indices of fit for model
complexity. For example, James and colleagues (1982) have proposed
the parsimonious normed fit index (PNFI), which adjusts the NFI fo
model parsimony. The PNFI is calculated as

(dfmodet /dfindep) X NFI ested Model Comparisons

 should be apparent at this point, the assessment of model fit is not a
raightforward task. Indeed, from the discussion thus far, it should be
ear that there are at least three views of what “model fit” means:

Similarly, the parsimonious goodness-of-fit index (PGFI) adjusts the
GFI for the degrees of freedom in the model and is calculated as

—~ (P/N) x GFI

1. the absolute fit of the model to the data,
2. the fit of a model to the data relative to other models, or
3. the degree of parsimonious fit of the model relative to other models.

where P = the number of estimated parameters in the model anc
= the number of data points.

Both the PNFI and the PGFI range from 0 to 1, with higher value:
indicating a more parsimonious fit. Unlike the other fit indices we havi
discussed, there is no standard for how “high” either index should b
to indicate parsimonious fit. Indeed, neither the PNFI nor the PGFI wil
likely reach the 0.90 cutoff used for other fit indices. Rather, thes:
indices are best used to compare two competmg theoretical models; tha
is, they would calculate an index of parsnmomous fit for each model anc
choose the model with the highest level of parsimonious fit.

The Akaike Information Criterion (AIC) and Consistent Akaik
Information Criterion (CAIC) (Akaike, 1987; Bozdogan, 1987) are alst

iven the problems inherent in assessing model fit, it is commonly
ested that models of interest be tested against reasonable alternative
odels. If we cannot show that our model fits the data perfectly, we can
least demonstrate that our model fits better than some other reason-
model. Although this may sound suspiciously like the question of
ymparative fit, recall that indices of comparative fit are based on
ymparison with the independence model, which is purposely defined
.a model that provides a poor fit to the data. In contrast, the procedures
are about to discuss are based on comparing two plausible models
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Many such plausible and rival specifications exist. For example
consider the case of a confirmatory factor analysis model shown i
Figure 3.3. The model suggests that there are two common factor:
which are correlated, causing six indicators. Plausible rival hypothese
might include a model suggesting two orthogonal common factor
(Figure 3.4) or a unidimensional model (Figure 3.5).

In the case of path analyses, an alternative specification of th
Fishbein and Ajzen (1975) model might include the hypothesis tha
subjective norms about a behavior influence both attitudes and behav
ioral intentions (see Figure 3.6). Support for this modification has bee:

und in some tests of Fishbein and Ajzen-based models (e.g., Fullagar,
:Coy, & Shull, 1992; Kelloway & Barling, 1993). Although we are
vays interested in whether the model(s) fit the data absolutely, we also
be interested in which of these competing specifications provides
est fit to the data.

the alternative models are in hierarchical or nested relationships,
n these model comparisons may be made directly. A nested relation-
ip exists between two models if one can obtain the model with the
est number of free parameters by constraining some or all of the
ameters in the model with the largest number of free parameters.

F2 N
0 » Subjective

Norms

}
X1 m X3 X4 Xs X6
— e Behavioral ey | Behavior
E1 E3 E4 es| |es Attitudes | Intentions
Figure 3.4,

Figure 3.6.
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That is, the model with the fewest parameters is a subset of the model
with more parameters.

For example, consider two factor models of an eight-item test. Mode]

A suggests that four items load on each factor and that the two factors |

are correlated (oblique). Model B suggests that the same four items load
on each factor but that the two factors are orthogonal. In this case,
Model B is nested in Model A. By taking Model A and constraining the
interfactor correlation to equal 0, one obtains Model B. The nesting
sequence results from the observation that Model B is composed of all
the same parameters as Model A, with the exception of the interfactor
correlation (which is not estimated in Model B).

Similarly, for a path model example, consider the model shown in
Figure 3.7. The model at the top suggests that A predicts both B and C
directly. In contrast, the model at the bottom suggests that A predicts B,
which in turn predicts C. Again, these models stand in a nested sequence.
By deleting the direct prediction of C from A from the first model, we
obtain the second model (ergo, the second model is nested within the
first), 8

When two models stand in a nested sequence, the difference between
the two may be directly tested with the ¥ difference test. The difference
between the % values associated with each model is itself distributed as
x* with degrees of freedom equal to the difference in degrees of freedom
for each model. For example, assume that the two-factor model with
correlated factors generated x*(19) = 345.97. Constraining the inter-
factor correlation between the two models to equal 0 results in ¥*(20)
= 347.58. The xzdifference is

347.58 — 345.97 = 1.61
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hich is distributed with
20 - 19 = 1 degree of freedom

ecause the critical value for x* with 1 degree of freedom is 3.84 and
he obtained value is less than the critical value, we conclude that there

no significant difference between the two models. By inference, then,
Jie model hypothesizing two oblique factors is overly complex. That is,
he additional parameter (the interfactor correlation) did not result in a
gnificant increase in fit.

In this simple example, the models differ in only one parameter, and
e results of the Y difterence test probably do not provide any infom3ation
eyond the tests of individual parameters discussed at the beginning of
his chapter. When models differ in more than one parameter, however,
he ¥ difference test is a useful omnibus test of the additional parameters
hat can be followed up by the Condition 9 tests of specific parameters.
. Before leaving the subject of nested model comparisons, it is impor-
t to note that the test is valid only when the models stand in nested
equence. If the nesting sequence is not present, use of the x’tjiﬁmm test

nappropriate. The key test of whether Model A is nested in Model B

-whether all the relationships constituting Model A exist in Model B.
at is, if Model B simply adds relationships to Model A, then the two
odels are nested. If there are other differences (e.g., Model B is
tained by deleting some parameters from Model A and adding some
ers), then the models are not nested.
Although the test is not conclusive, it should be apparent that given
o models in nested sequence, the model with the fewest parameters
| always provide the worst fit to the data (i.e., be associated with the
hest %> value and the larger degrees of freedom). Moreover, the
grees of freedom for the ¥ difference test should always equal the number
additional paths contained in the more complex model.

odel Respecification

oted earlier, perhaps no aspect of structural equation modeling
iques is more controversial than the role of model respecification.
ite the controversy (see, for example, Brannick, 1995; Kelloway,
95; Williams, 1995), structural equation programs such as LISR.E.L
mmonly provide the researcher with some guidelines for finding
urces of model misspecification. That is, given that the proposed
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model does not fit the data, is there anything we can do to improve th:
fit of the model?

Two sources of information are particularly valuable. First, the test
of model parameters discussed at the beginning of this chapter provid
some information about which parameters are contributing to the fit o
the model and which parameters are not making such a contribution
Theory trimming (Pedhazur, 1982) is a common approach to mode
improvement. It essennally consists of deleting nonsignificant path
from the model to improve model fit.

Although these tests provide information about the estimated mode
parameters, LISREL also provides information about the nonestimatec
parameters. That is, the use of a theory-trimming approach asks, “Wha
parameters can be deleted from the model?”; one can also adopt :
theory-building approach that asks, “What parameters should be addec
to the model?”

These tests are technically known as Lagrange multiplier tests but are
referred to in LISREL as the modification indices. For each parameter
in the model that is set to zero, LISREL calculates the decrease in the
model ¥? that would be obtamed from estimating that parameter. The
amount of change in the model % is referred to as the modification index
for that parameter.

Obviously, there is a trade-off between estimating more parameters
(with the corresponding loss of degrees of freedom) and improving the
fit of the model. Commonly, we would estimate any parameter that is
associated with a modification index greater than 5.0; however, this
rough guideline should be used with caution for several reasons.

First, recall that such specification searches are purely exploratory in |

nature. In contrast with the other parameters in the model, which aré

based on theory or previous research, parameters added on the basis of |

the modification indices (or, indeed, deleted on the basis of slgmflcance

tests) may be reflecting sample-specific variance. The modlflcatlons ;

made to the model following these procedures may not generalize
other samples.

Second, the process of theory trimming or theory building is anal
gous to the procedures of stepwise regression through either backward
elimination (theory trimming) or forward entry (theory bmldmg)
such, both procedures are based on univariate procedures in which eaclg
parameter is considered in isolation. As a result, both theory trimming
and theory building are based on a large number of statistical tests, with
a corresponding inflation of Type I error rates. Moreover, the tests ma}é

Q
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misleading in that adding a parameter to a model based on the
fication indices may change the value of parameters already in the
el (i.e., making theoretically based parameters nonsignificant).
hird, even when the modification indices are greater than 5.0, the
rovement in model fit obtained from freeing parameters may be
al to the model as a whole. For example, if the overall x* for the
el is 349.23, then it is questionable whether the improvement in fit
uction of the % by 5.0) is worth the dangers of adding a parameter
d on the modification indices.

*

ard a Strategy for Assessing Model Fit

as been evident throughout this discussion, the assessment of model
a complex question. Numerous fit indices have been proposed, eaf:h
a slightly different conception of what it means to say a model “fits
data.” The literature is in agreement, however, on several fundamen-
oints that provide the basis for a strategy of model testing.

irst, the focus of assessing model fit almost invariably should be on
paring the fit of competing and theoretically plausi.ble models,
ply stated, the available techniques for assessing model fit do a better
of contrasting models than they do of assessing one model in
ion. The researcher’s task, then, is to generate plausible rival
ications and test them. Ideally, such rival specifications will consist
ested models allowing the use of direct methods of comparison such
he deifference fest.

econd, and in a similar vein, rather than relying on modification
ces and parameter tests to guide the development of models, re-
chers should be prepared a priori to identify and test the sources of
iguity in their models. I elaborate on this theme in subsequ;nt
pters, where examples of the major types of structural equation
dels are presented.

"hird, given the varying definitions of model fit presented above, it
cumbent on researchers to use multiple measures of fit. As Loehlin
87) notes, the use of multiple fit indices may place the researcher in
position of an individual with seven watches: If they all agree, the_n
now what time it is, but if they don’t, you are no better off than if
had no watch. I suggest that the situation with regard to assessing
del fit is not that serious. Understanding what each of the various fit
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indices means would suggest that, at a minimum, researchers would
want to consider the issues of absolute fit, comparative fit, and parsimo-
nious fit for each model tested. Fit indices therefore should be chosen
so as to reflect each of these concerns (i.e., choosing one or two indices
of each type of fit). ‘

Finally, it is important for researchers to recognize that “model fit”
does not equate to “truth” or “validity.” The fit of a model is, at best, a
necessary but not sufficient condition for the validity of the theory that
generated the model predictions. Although the question of model fit is
important, it is by no means the most important or only question we
should ask about our data.

Note

1. Recall the previous discussion about the arbitrariness of such guidelines and the
resultant need for cautious interpretation, ’

HAPTER 4
Using LISREL

aving considered the general approach to be used in structural
equation modeling, it is now time to consider the specifics of using
ISREL to estimate and evaluate such models. It should be noted that
ther programs (e.g., EQS and EZPATH) are available to evaluate
ctural equation models. LISREL remains, however, a popular and
ridely available software package for structural equation modeling.

. LISREL works by defining eight matrices; within each matrix are free
fixed parameters. Free parameters are unknowns to be estimated by
program, whereas fixed parameters are set to some predetermined
salue (usually zero). '

For example, a typical LISREL matrix might contain three rows and
vo columns, as follows.

K1 K2
X1 Free  Fixed
X2 Free Fixed
X3 Fixed Free

this case, matrix elements (1, 1), (2, 1) and (3, 2) are going to be freely
imated by the program. Matrix elements (1, 2), (2, 2), and (3, 1) are
ixed (set to zero). Researchers would specify the model to be tested by
ripulating these matrices and whether their elements were fixed or
e. Using the matrix formulation of LISREL, the researcher’s task is to
anslate the model (i.e., the path diagram) into the LISREL matrices.
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