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of model, I present a sample application including the source code, printout,
and results section. Chapter 8 presents some “tricks of the trade” for
structural equation modeling, including the use of single indicator latent
variables and reducing the cognitive complexity of models.

Although a comprehensive understanding of structural equation
modeling is a worthwhile goal, I have focused in this book on the three
most common forms of analysis. In doing so, I have “glossed over” many
of the refinements and types of analyses that can be performed within
a structural equation modeling framework. I have also tried to stay away
from features of LISREL VIII (Jéreskog & Sérbom, 1992) that are
implementation-dependent. For example, I do not discuss the imple-
mentation of the SIMPLIS language or the graphical interface available
in LISREL VIIL. Although this choice may limit the current presentation
with respect to LISREL VIII, it also makes the book relevant to users of
older versions of LISREL.

When all is said and done, the intent of this book is to give a
“user-friendly” introduction to structural equation modeling. The pre-
sentation is oriented to researchers who want or need to use structural
equation modeling techniques to answer substantive research questions.
Those interested in a more mathematical presentation are referred to
the ever growing body of literature on the derivation and implementa-
tion of structural equation models.

Structural
Equation Models

CHAPTER 2

Theory and Development

r'T o begin, let us consider what we mean by the term theory. At one
level, a theory can be thought of as an explanation of why variables
are correlated (or not correlated). Of course, most theories in the social
sciences go far beyond the description of correlations to include hy-
potheses about causal relations. A necessary but insufficient condition
for the validity of a theory would be that the relationships (i.e., corre-
ations/covariances) among variables are consistent with the proposi-
ions of the theory.

.« For example, consider Fishbein and Ajzen’s (1975) well-known the-
ory of reasoned action. In the theory (see Figure 2.1), the best predictor
f behavior is posited as being the intention to perform the behavior. In
n, the intention to perform the behavior is thought to be caused by
the individual’s attitude toward performing the behavior and (b) the
ndividual’s subjective norms about the behavior. Finally, attitudes to-
rd the behavior are thought to be a function of the individual’s beliefs
out the behavior. This simple presentation of the theory is sufficient
generate some expectations about the pattern of correlations between
he variables referenced in the theory.

If the theory is correct, then one would expect that the correlation
tween behavioral intentions and behavior and the correlation between
eliefs and attitudes should be stronger than the correlations between
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attitudes and behavior or subjective norms and behavior. Correspor
ingly, the correlations between beliefs and behavioral intentions a
beliefs and behavior should be the weakest correlations. With referer
to Figure 2.1, the general principle is that if the theory is correct, th
direct and proximal relationships should be stronger than more dis
relationships. -

As a simple test of the theory, one could collect data on behavi
behavioral intentions, attitudes, subjective norms, and beliefs. If ¢
theory is correct, one would expect to see the pattern of correlatio
described above, If the actual correlations do not conform to the patte:
one could reasonably conclude that the theory was incorrect (i.e, t

model of reasoned action did not account for the observed correlation .

Note that the converse is not true. Finding the expected pattern
correlations would not imply that the theory is right, only that it
plausible. There might be other theories that would result in the sar
pattern of correlations (e.g., one could hypothesize that behavior caus

behavioral intentions, which in turn cause attitudes and subjective norm .

As noted earlier, finding the expected pattern of correlations is
necessary but not sufficient condition for the validity of the theory.
Although the above example was a simple one, it illustrates the log
of structural equation modeling. In essence, structural equation mod¢
ing is based on the observations that (a) every theory implies a set
correlations and (b) if the theory is valid, then the theory should be ab

to explain or reproduce the patterns of correlations found in tl
empirical data,
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The Process of Structural
Equation Modeling

ie remainder of this chapter is organized according to a linear “model”
of structural equation modeling. Although linear models of the research
process are notoriously suspect (McGrath, Ma'rtin, & Kukla, 1982) and
may not reflect actnal practice, the heuristic has the advantage of

awing attention to the major concerns, issues, and decisions involved
n developing and evaluating structural equation modeling. Bollen and
Long (1993, pp. 1-2) describe the five stages characteristic of most
applications of structural equation modeling:

. model specification,
. identification,

. estimation,

. testing fit, and

. respecification.

=B o T
L b W N e

For presentation purposes, I will defer much of the discussion of testing
fit until the next chapter.

Model Specification

Structural equation modeling is inherently a confirmatory technique.
‘That is, for reasons that will become clear as the discussion progresses,
the methods of structural equation modeling are ill suited for the
exploratory identification of relationships. Rather, the foremost requi{:e-
ment for any form of structural equation modeling is the a priori specifi-
cation of a model. The propositions composing the model are most
frequently drawn from previous research or theory (Bollen & Long,
1993), although the role of informed judgment, hunches, and dogmatic
statements of belief should not be discounted. However derived, the
purpose of the model is to explain why variables are correlated in a
particular fashion. Bollen (1989, p. 1), for example, presents the funda-
mental hypothesis for structural equation modeling as:

Z = 3%(0)
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where T is the observed population covariance matrix, © is a vector of
model parameters, and X(©) is the covariance matrix implied by the
model. When the equality expressed in the equation holds, the. model
is said to “fit” the data. Thus, the goal of structural equation modeling
is to explain the patterns of covariance observed among the study
variables.

In essence, then, a model is an explanation of why two (or more)
variables are related (or not). In undergraduate statistics courses, we
often harp on the observation that a correlation between X and Y has at
least three possible interpretations (i.e., X causes Y, Y causes X, or X and
Y are both caused by a third variable Z). In formulating a model, you
are choosing one of these explanations, in full recognition of the fact
that either of the remaining two might be just as good, or better,
explanations.

It follows from these observations that the “model” used to explain
the data cannot be derived from that data. For any covariance or
correlation matrix, one can always derive a model that provides a perfect
fit to the data. Rather, the power of structural equation modeling derives
from the attempt to assess the fit of theoretically derived predictions tc
the data.

It might help at this point to consider two types of variables. In any
study, we have variables we want to, explain or predict. We also have
variables that we think will offer the explanation or prediction we desire
The former are known as endogenous variables, whereas the latter are
exogenous variables. Exogenous variables are considered to be the
starting points of the model. We are not interested in how the exogenou:
variables came about. Endogenous variables may serve as both predic
tors and criteria, being predicted by exogenous variables and predictin
other endogenous variables. A model, then, is a set of theoretica
propositions that link the exogenous variables to the endogenous vari
ables and the endogenous variables to one another. Taken as a whole
the model explains both what relationships we expect to see in the dat
and what relationships we do not expect to emerge.

It is worth repeating that the fit of a model to data, in itself, convey
no information about the validity of the underlying theory. Thankfull;
the misnomer (Breckler, 1990) “causal modeling” appears to hav
passed out of fashion, with the recognition that structural equatio
models do not assess or “prove” causality any more than the applicatio
of any statistical technique conveys information about the causal rel:
tions in the data (Williams, 1995).
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Figure 2.2,

Although the hypotheses underlying model development may be
causal in nature, assessing the fit of a model does not provide a basis for
causal inference (Brannick, 1995; Kelloway, 1995; Williams, 1995). The
conditions necessary for causal inference in structural equation model-
ing are presented by James and colleagues (James, Mulaik, & Brett,
1982) and are more briefly summarized by Bollen (1989) as three main
conditions: (a) association, (b) isolation (the inclusion of all relevant
_ predictors), and (c) the establishment of causal direction. Meeting these
conditions for causal inference is more a matter of study design than of
statistical technique.

. Path diagrams. Most frequently, the structural relations that form the
model are depicted in a path diagram in which variables are linked by
unidirectional arrows (representing causal relations) or bidirectional
urved arrows (representing noncausal, or correlational, relationships).!
\ Considet three variables X, Y, and Z. A possible path diagram depicting
the relationships among the three is given in Figure 2.2.

~ The diagram presents two exogenous variables (X and Y) that are
assumed to be correlated (curved arrow). Both variables are presumed
to cause Z (unidirectional arrows).

Now consider adding a fourth variable, Q, with the hypotheses that
) is caused by both X and Z, with no direct effect of Y on Q. The path
iagram representing these hypotheses is presented in Figure 2.3.
Three important assumptions underlie path diagrams. First, it is
sumed that all of the proposed causal relations are linear. Although
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Figure 2.3,

there are ways of approximating nonlinear relations in structural equa-
tion modeling (see Kenny & Judd, 1984), for the most part we are
concerned only with linear relations. Second, path diagrams are assumed
to represent all the causal relations between the variables. It is just as
important to specify the causal relationships that do exist as it is to
specify the relationships that do not. Finally, path diagrams are based
on the assumption of causal closure; this is the assumption that all causes
of the variables in the model are represented in the model. That is, any
variable thought to cause two or more variables in the model should in
itself be part of the model. Failure to actualize this assumption results
in misleading and often inflated results (which economists refer to as
specification error). In general, we are striving for the most parsimoni-
ous diagram that (a) fully explains why variables are correlated and
(b) can be justified on theoretical grounds.

Finally, it should be noted that one can also think of factor analysis
as a path diagram. The common factor model on which all factor
analyses are based states that the responses to an individual item are a
function of (a) the trait that the item is measuring and (b) error. Another
way to phrase this is that the observed variables (items) are a function
of both common factors and unique factors.

For example, consider the case of six items that are thought to load on
two factors (which are oblique). Diagrammatically, we can represent this
model as shown in Figure 2.4. Note that this is the conceptual model that
we have when planning a factor analysis. As will be explained in greater
detail later, the model represents the confirmatory factor analysis model
and not the model commonly used for exploratory factor analysis.

In the diagram, F1 and F2 are the two common factors. They are also
referred to as latent variables or unobserved variables because they are
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Figure 2.4.

not measured directly. Note that it is common to represent latent
variables in ovals or circles. X1 . . . X6 are the observed or manifest
variables (test items, sometimes called indicators), whereas E1 . . . E6
are the residuals (sometimes called unique factors or error variances).
Thus, although most of this presentation focuses on path diagrams, all
the material is equally relevant to factor analysis, which can be thought
of as a special form of path analysis.

o

‘Converting the path diagram to structural equations. Path diagrams are
most useful in depicting the hypothesized relations because there is a set
“of rules that allow one to translate the diagram into a series of structural
equations. The rules, initially developed by Sewall Wright (1934), allow
one to write a set of equations that completely define the observed
correlations matrix.

The logic and rules for path analysis are quite straightforward. The
set of arrows constituting the path diagram include both simple and
_compound paths. A simple path (e.g., X = Y) represents the direct
elationship between two variables (i.e., the regression of Y on X). A
ompound path (e.g., X = Y = Z) consists of two or more simple paths.
he value of a compound path is the product of all the simple paths
onstituting the compound path. Finally, and most important for our
urposes, the correlation between any two variables is the sum of the
imple and compound paths linking the two variables.

Given this background, Sewall Wright’s rules for decomposing cor-

elations are these:
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1. After going forward on an arrow, the path cannot go backward. The path

can, however, go backward as many times as necessary prior to going

forward.
2. The path cannot go through the same construct more than once.
3. The path can include only one curved arrow.

Consider, for example, three variables, A, B, and C. Following
psychological precedent, I measure these variables in a sample of 100
undergraduates and produce the following correlation matrix:

A B C
A 1.00
B S0 1.00
C .65 .70 1.00

I believe that both A and B are causal influences on C. Diagrammatically,
my model might look like the model shown in Figure 2.5.

Following the standard rules for computing path coefficients, I can
write a series of structural equations to represent these relationships. By
solving for the variables in the structural equations, I am computing the
path coefficients (the values of the simple paths).

c=.3
a+ch=.65 ; 2.1) -
b+ca=.70 2.2)

Note that three equations completely define the correlation matrix.
That is, each correlation is thought to result from the relationships
specified in the model. Those who still recall -high school algebra will
recognize that I have three equations to solve for three unknowns;
therefore, the solution is straightforward. Because I know the value of
¢ (from the correlation matrix), I begin by substituting ¢ into Equations
2.1 and 2.2. Equation 2.1 then becomes

a +.5b = .65 (2.1.1)
and Equation 2.2 becomes

b +.5a =.70 (2.2.1)
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Figure 2.5.

To solve the equations, one can multiply Equation 2.2.1 by 2 (result-
ing in Equation 2.2.2) and then subtract Equation 2.1.1 from the result.

2b+a=14 (2.2.2)
~(.Sb+a=.65 (2.1.1)
=15 =.75 2.3)

From Equation 2.3, we can solve for b: b = .75/1.5 =.50. Substituting
b into either Equation 2.2.1 or Equation 2.1.1 results in 2 = .40. Thus,
the three path values are 4 = .40, b = .50, and ¢ = .50.

These numbers are standardized partial regression coefficients or beta

_ weights and are interpreted exactly the same as betas derived from
- multiple regression analyses. Indeed, a simpler method to derive the

path coefficients 4 and b would have been to use a statistical package to
conduct an ordinary least squares regression of C on A and B. The

_ important point is that any model implies a set of structural relations

among the variables, These structural relations can be represented as a
set of structural equations and, in turn, imply a correlation (or covari-
ance) matrix.

Thus, a simple check on the accuracy of the solution is to work

- backwards. Using the estimates of structural parameters, we can calcu-

late the correlation matrix. If the matrix is the same as the one we started
out with, we have reached the correct solution. Thus,
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c=.5
a+chb=.65
b+ca=.70

and we have calculated that b = .5 and @ = .4. Substituting into the
second equation above, we get .4 + .5 x.5 = .65 or .4 + .25 = .65,
For the second equation, we get .5 + .5 x .4 = .70, or.5 + .20 =.70.
In this case, our model was able to reproduce the correlation matrix,
That is, we were able to find a set of regression or path weights for the
model that can replicate the original, observed, correlations.

Identification

As illustrated by the foregoing example, application of structural
equation modeling techniques involves the estimation of unknown
parameters (e.g., factor loadings or path coefficients) based on observed
covariances/correlations. In general, issues of identification deal with
whether a unique solution for the model (or its component parameters)
can be obtained (Bollen, 1989). Models and/or parameters may be
underidentified, just-identified, or overidentified (Pedhazur, 1982).

In the example given above, the number of structural equations
composing the model exactly equals the number of unknowns (i.e.,
three unknowns and three equations). In such a case, the model is
said to be just-identified (because there is just one correct answer). A
just-identified model will always provide a unique solution (i.e., set of
path values) that will be able to perfectly reproduce the correlation
matrix. A just-identified model is also referred to as a saturated model
(Medsker et al., 1994).

A necessary, but insufficient, condition for the identification of a
structural equation model is that one cannot estimate more parameters
than there are unique elements in the covariance matrix. Bollen (1989)
refers to this as the “t rule” for model identification. Given a k x k
covariance matrix (where k is the number of variables), there are k& x
(k- 1)/2 unique elements in the covariance matrix. Attempts to estimate
exactly k X (k ~ 1)/2 parameters results in the just-identified or “satu-
rated” (Medsker et al., 1994) model. Only one unique solution is
obtainable for the just-identified model, and the model always provides
a perfect fit to the data.
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s the number of unknowns exceeds the number of equations,
el is said to be underidentified. This is a problem because the
parameters cannot uniquely ascertained; there is no unique
on. Consider, for example, the solution to the equation X + Y =
re are no two unique values for X and Y that solve this equation
.are, however, an infinite number of possibilities).
t, and most important, when the number of equations exceeds the
er of unknowns, the model is overidentified. When models are
identified, there are a number of unique solutions, and the task in
t applications of structural equation modeling techniques is to find
olution that provides the best fit to the data. Thus, the identification
structural equation model is purely a matter of the number of
ated parameters (Bollen, 1989).
¢ ideal situation for the social scientist is to have an overidentified
¢l. If the model is underidentified, no solution is possible. If the
el is just-identified, then there is one set of values that completely
he observed correlation matrix. That matrix, however, also contains
y sources of error (e.g., sampling error, measurement error). In an
eridentified model, there are a number of possible solutions, and the
sk is to select the one that comes closest to explaining the observed
ita within some margin of error. We always, therefore, want our
odels to be overidentified.
“ Although it is always possible to “prove” that your proposed model
overidentified (see Long, 1983a, 1983b for examples), the procedures
e cumbersome and involve extensive calculations. Overidentification
a structural equation model is achieved by placing two types of
strictions on the model parameters to be estimated.

First, researchers assign a direction to parameters. In effect, positing
model based on one-way causal flow restricts half of the posited
parameters to be zero. Models incorporating such a one-way causal flow
are known as recursive models. Bollen (1989) points out that recursive-
ness is a sufficient condition for model identification. That is, as long as
all the arrows are going in the same direction, the model is identified.
Moreover, in the original formulation of path analysis, where path
oefficients are estimated through OLS regression (Pedhazur, 1982),
“tecursiveness is a required property of models. Recursive models, how-
ever, are not a necessary condition for identification, and it is possible
~ ‘to estimate identified nonrecursive models (i.e., models that incorporate
reciprocal causation) using programs such as LISREL.

Second, researchers achieve overidentification by setting some pa-
rameters to be fixed to a predetermined value. Typically, values of specific
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parameters are set to zero, Earlier, in the discussion of model specifica-
tion, I made the point that it is important for researchers to consider
(a) what paths will be in the model and (b) which paths are not in the
model. By “not in the model,” I am referring to the setting of certain
paths to zero. For example, in the theory of reasoned action presented
earlier (see Figure 2.1), several potential paths (i.e., from attitudes to
behavior, from norms to behavior, from beliefs -to intentions, from
beliefs to norms, and from beliefs to behavior) were set to zero to achieve
overidentification. Had these paths been included in the model, the
model would be just-identified. )

Estimation and Fit

If the model is overidentified, then, by definition, there are an infinite
number of solutions. Moreover, given moderately complex models, -
solving the structural equations by hand would quickly become a -

formidable problem. Indeed, the growing popularity of structural equa-
tion modeling is probably most attributable to the availability of soft-

ware packages such as LISREL that are designed to solve sets of

structural equations.
LISREL solves these equations (as do most similar programs) by using

numerical methods to estimate parameters. In particular, LISREL solves for

model parameters by a process of iterative estimation. To illustrate the
process of iterative estimation, consider a common children’s guessing game.

When I was a boy, we played a game called hot, hotter, hottest. In
one version of the game, one child would pick a number and the other
child would attempt to guess the number. If the guess was close, the
guesser was “getting hotter.” If the guess was way off, the guesser was
“getting colder.” By a simple process of informed trial and error, you
could almost always guess the number.

This is precisely the process LISREL uses to estimate model parame-
ters. The program starts by taking a “guess” at the parameter values. It
then calculates the implied covariance matrix (the covariance matrix
that would result from that set of model parameters). The implied
covariance matrix is then compared to the observed covariance matrix
(i.e., the actual data) to see how “hot” the first guess was. If the guess
was right (i.e., if the implied and actual covariance matrices are very
similar), the process stops. If the guess was wrong, then LISREL adjusts
the first guess (the starting values) and checks again. This process of
iterative estimation continues until some fitting criterion has been
achieved (the solution is “red hot™).
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does LISREL know when it is “red hot”—that is, when the correct
+is obtained? In general, the user specifies a fitting criterion (a
matical function) that the program tries to minimize, When repeated
jons fail to minimize the fitting criterion, LISREL grinds to a halt
orts the last solution it estimated. Three very common fitting
{4 are ordinary least squares (OLS), generalized least squares (GLS),
maximum likelihood (ML). In matrix notation, these criteria are

ed as

b=

OLS = tr(S — C)?
GLS = 1/2 tr[(S - C)S~1)?
ML = In|C| -In]S| + tr SC'—m

tr = trace (sum of the diagonal elements),

$ = covariance matrix implied by the model,
C = actual covariance matrix,
In = natural logarithm, and

| ] indicates the determinant (index of generalized
. variance) of a matrix.

Ithough the specifics of the equations are not important, it is important
5 note that each criterion attempts to minimize the differences between
e implied and observed covariance matrices. That is, each equation
as as its basis the direct comparison of § and C. When the observed
d predicted covariance matrices are exactly the same, all the above
riteria will equal 0. Conversely, when the matrices are different, the
alue of the fitting function gets larger. Thus, the goal of the iterative
stimation procedure used by LISREL is to minimize the fitting function
pecified by the user.

Because of the complexity of the subject, we will defer further
iscussion of assessing model fit until the next chapter. Three additional
ssues regarding model estimation should be noted, however: the choice
f estimators, the choice of data type, and sample size requirements.

Choice of Estimators

Perhaps the most widely used type of estimation is maximum likeli-
hood, followed by generalized least squares (Anderson & Gerbing,
1988; Kelloway, 1996). Maximum likelihood estimation is so popular
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that researchers seem to equate using LISREL with doing maximum
likelihood estimation (Kelloway, 1996), even though LISREL allows a
variety of estimation techniques.

Maximum likelihood estimators are known to be consistent and
asymptotically efficient in large samples (Bollen, 1989). The popularity
of these methods, however, is more likely attributable to the fact that
(under certain conditions) the minimum of the fitting criterion multi-
plied by N — 1 (where N is the number of observations) is distributed as
%% For maximum likelihood estimation, if we have a large sample and
are willing to assume (or show) that the observed variables are multi-
variate normal, then the % test is reasonable. If we have a large sample
but are not willing to assume multivariate normality, then GLS estima-
tion is the method of choice.

Although most readers will be familiar with Ordinary Least Squares
estimation as used in multiple regression, maximum likelihood and
generalized least squares estimation are slightly different. Ordinary least
squares is known as a partial information technique, whereas both
maximum likelihood estimation and generalized least squares are full
information techniques. To understand this distinction, consider the
diagram of the Fishbein and Ajzen (1975) theory of reasoned action
presented in Figure 2.1.

As mentioned earlier, one way to solve for the path values in this
model would be to conduct a series of three regression analyses. That is,
one would regress the following:

1. behavior on behavioral intentions,
2. behavioral intentions on subjective norms and attitudes, and
3. attitudes on beliefs.

If you were to follow this strategy, then each path value would be
estimated independently of the others. If, for example, you made a
mistake in calculating the value for the path relating beliefs to attitudes,
that would not affect the value of the path leading from behavioral
intentions to behavior.

In contrast, maximum likelihood estimation is a full information
technique. Simply put, in using maximum likelihood estimation, one
estimates all the parameters (i.e., path values) simultaneously. In this
case, an error in one value (e.g., a poorly specified part of the model)
will be reflected in every parameter estimated.
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The consequences of using full information techniques as opposed to
artial information techniques are potentially serious (Brannick, 1995) .
ut as yet poorly understood (Williams, 1995). In particular, the advan-
ages of full information techniques (i.e., the availability of hypothesis
esting) may outweigh the potential disadvantages. Moreover, under
many circumstances, maximum likelihood estimation and ordinary least
quares will result in identical estimates, lending weight to the use of
full information techniques.

Choice of Data

Up until this point, I have been using the terms correlation matrix and
ovariance matrix interchangeably. The two matrices are very similar.
A covariance matrix has measures of covariance in the off-diagonal
yositions, with measures of variance in the main diagonal. A correlation
ratrix is simply a standardized covariance matrix (i.e., because all the
cariables are standardized, a correlation matrix has 1s in the main
diagonal). '

Although the matrices are very similar, the standardization of vari-
ables in constructing a correlation matrix removes important informa-
ion about the scale of measurement of individual variables from the
data. This is an important concern because many types of structural
squation models are not scale invariant (Cudeck, 1989). That is, one
will get different results depending on whether the analysis is based on
correlation or a covariance matrix.

Some authors have suggested that the choice of a correlation or a
ovariance matrix for input is based on both theoretical concerns and
the preferences of some disciplines. Theoretically, if one is concerned
nly with the pattern of relationships among variables, a correlation
matrix is an appropriate choice. Indeed, use of a correlation matrix
simplifies interpretation of the results by rescaling all variables to have
unit variance. Moreover, use of the correlation matrix may result in
more conservative estimates of parameter significance (generally held to
be desirable in statistics). ‘

Having said this, use of the covariance matrix is strongly recom-
ended in virtually all instances. Structural equation models are not
ways scale free—thus, a model that fits the correlation matrix may not
it the covariance matrix. Moreover, the hypothesis tests available in
structural equation modeling are based on the assumption that one is
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analyzing a covariance matrix. Thus, although there may be valid
reasons to analyze a correlation matrix, use of the covariance matrix
generally is recommended. This general recommendation applies with
equal force to all the types of analysis discussed here.

Sample Size

Although it may not have been obvious up until this point, structural
equation modeling is very much a large sample technique. Both the
“estimation methods (e.g., maximum likelihood) and tests of model fit
(e.8., the % test) are based on the assumption of large samples. Several
authors have presented guidelines on the definition of “large™ (e.g.
Anderson & Gerbing, 1984; Bentler & Chou, 1987; Marsh, Balla, &
MacDonald, 1988).

In general, it seems that a sample size of at least 200 observations
would be an appropriate minimum. For example, it is commonly
recommended that models incorporating latent variables require at least
a sample size of 100 observations, although parameter estimates may be
inaccurate in samples of less than 200 (Marsh et al., 1988). Boomsma
(1983) recommends a sample size of approximately 200 for models of
moderate complexity. Taking a somewhat different approach, Bentler
and Chou (1987) have suggested that the ratio of sample size to estimated
parameters be between 5:1 and 10:1 (similar to frequently cited guidelines
for regression analyses, e.g., Tabachnick 8¢ Fidell, 1996).

Model Modification

Perhaps no aspect of structural equation modeling techniques is more
controversial than the role of model respecification. The goal of model
respecification is to improve either the parsimony or the fit of the model
(MacCallum, 1986). Thus, respecification typically consists of one of
two forms of model modification. First, researchers may delete nonsig-
nificant paths from their models in a “theory-trimming” (Pedhazur,
1982) approach. Second, researchers may add paths to the model based
on the empirical results. )

Although model respecification frequently is included in descriptions
of the modeling process (e.g., Bollen & Long, 1993), there are several
problems with specification searches. Perhaps most important, the
available data suggest that specification searches typically do not retrieve
the actual model (MacCallum, 1986). Moreover, because specification
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searches are conducted post hoc and are empirically rather than theo-
retically derived, model modifications based on such searches must be
validated on an independent sample. As James and James (1989) point
out, it is perfectly acceptable to modify the model and assess the fit of
he model based on data from one sample; it is the interpretation of such
“model modifications that is suspect. When models are modified and
_reassessed on the same data, parameters added to or deleted from the
_model cannot be said to be confirmed.

Aside from the exploratory nature of model respecifications, there is
onsiderable doubt about the meaning of parameters added to a model
based on a specification search. Certainly, there are examples in the
terature (and in my own work; see Barling, Kelloway, & Bremmerman,
991) of adding substantively umnterpretable parameters (e.g., covari-
ances among error terms) to a model to improve the fit of the model.
ch parameters have been termed “wastebasket” parameters (Browne,
982), and there is little justification for their inclusion in structural
models (Kelloway, 1995, 1996).

It is tempting to conclude, as I have previously (Kelloway, 1996), that
sarameters that can be assigned a substantive meaning are “legitimate”
ditions to a structural model during a specification search. Steiger
1990, p. 175) pointed to the flaw in this conclusion when he ques-
ioned, “ What percentage of researchers would find themselves unable
o think up a ‘theoretical justification’ for freeing a parameter? In the
sbsence of empmcal 1nformat10n to the contrary, I assume that the
answer . . . is ‘near zero.’

Although replication of model modifications on an independent
ple is commonly recognized to be an appropriate strategy, it should
noted that there are also problems with this strategy. Perhaps most
portant, because the empirically driven respecification of model
rameters capitalizes on chance variations in the data, the results of
¢h replication efforts may be inconsistent (MacCallum, Roznowski,
Necowitz, 1992). Thus, there are both conceptual and empirical
oblems with the practice of respecifying models and, at best, such
specifications provide limited information.

o what do you do if your model doesn’t fit the data? One solution
ill-fitting model is to simply stop testing and declare the theory
at guided model development to be wrong. This approach has the
vantage of conforming to a classical decision-making view of hypothe-
testing; that is, you have a hypothesis, you perform a test, and you
her accept or reject the hypothes1s The disadvantage of this approach
of course, that one does not gain any insight into what the “correct”
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(or at least one plausible) theory might be. In particular, there i
information in the data you have collected that you may not be using t«
its fullest advantage.

A second approach to an ill-fitting model is to use the availabl
information to try to generate a more appropriate model. This is th:
“art” of model modification—changing the original model to fit th
data. Although model modification is fraught with perils, I do no
believe that anyone has ever “gotten it right” on the first attempt a
model fitting. Thus, the art of model fitting is to understand the danger
and try to account for them when you alter your model based o1
empirical observations.

The principal -danger in post hoc model modification is that thi
procedure is exploratory and involves considerable capitalization o1
chance. Thus, you might add a path to a model to make it fit the dat:
only to find that you have capitalized on chance variation within you
sample and the results will never be replicated in another sample. Ther:
are at least two strategies for minimizing this problem.

First, try to make model modifications that have some semblance o
theoretical consistency (bearing in mind Steiger’s comments about ou
ability to rationalize). If there are 20 studies suggesting that job satisfac
tion and job performance are unrelated, do not hypothesize a patl
between satisfaction and performance just to make your model fit
Second, as with any scientific endeavor, models are worthwhile onl:

when they can be replicated in another sample. Post hoc modification
to a model should always be (a) identified as such and (b) replicated i1

another sample.”

Notes

1. It also helps to remember that in path diagrams, the hypothesized causal “flow
is traditionally from left to right (or top to bottom); that is, the independent (exogenous
variables or predictors are on the left (top), and the dependent {(endogenous) variable
or criteria are on the right (bottom).

2. Note that the use of a holdout sample is often recommended for this purpose. Se
aside 25% of the original sample, then test and modify the model on the remaining 75%
When you have a model that fits the data on the original 75%, test the model on th
remaining 25%. Although this procedure does not always result in replicated finding:
it can help identify which paths are robust and which are not.

3 Assessing
Model Fit

CHAPTER

™Yerhaps more has been written about the assessment of model fit than
any other aspect of structural equation modeling. Indeed, many
earchers are attracted to structural equation modeling techniques
ause of the availability of global measures of model fit (Brannick,
95). In practice, such measures often are used as an omnibus test of
‘model whereby one first assesses global fit before proceeding to a
deration of the individual parameters composing the model
skog, 1993). A variety of fit indices are currently available to
.archers wishing to assess the fit of their models, and it is instructive
nsider exactly what we mean when we claim that a model “fits”

least two traditions in the assessment of model fit are apparent
a, 1993): the assessment of the absolute fit of the model and the
sment of the comparative fit of the model. The assessment of the
parative fit of the model may be further subdivided into the assess-
tof comparative fit and parsimonious fit. The assessment of absolute
‘concerned with the ability of the model to reproduce the actual
riance matrix. The assessment of comparative fit is concerned with
paring two or more competing models to assess which provides the
t fit to the data.
"he assessment of parsimonious fit is based on the recognition that
n always obtain a better fitting model by estimating more parame-
‘At the extreme, one can always obtain a perfect fit to the data by
ting the just-identified model containing all possible parameters.)
the assessment of parsimonious fit is based on the idea of a

23




